リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Electrodeposition of Tungsten from Molten KF–KCl–WO3 and CsF–CsCl–WO3」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Electrodeposition of Tungsten from Molten KF–KCl–WO3 and CsF–CsCl–WO3

Nohira, Toshiyuki Ide, Tatsuya Meng, Xianduo Norikawa, Yutaro Yasuda, Kouji 京都大学 DOI:10.1149/1945-7111/abf266

2021.04.07

概要

Electrodeposition of W coatings in KF–KCl eutectic melts was investigated after adding 0.5–2.0 mol% of WO3 at 923 K. Cyclic voltammetry at a Ag electrode suggested that the electrodeposition of W from W(VI) ions proceeds from 1.65 V vs K+/K. Electrodeposition of the α-W phase was confirmed by X-ray diffractometry (XRD). The effects of current density and amount of WO3 on the morphology of W coatings were investigated by surface and cross-sectional scanning electron microscopy (SEM). The smoothest W coating with a thickness of ~15 μm was formed at 12.5 mA cm−2 and 2.0 mol% WO3 in KF–KCl eutectic melts. By increasing the charge density, a coating thickness of ~30 μm was attained; however, it significantly increased the surface roughness of the coating. The electrodeposition of W was also performed in CsF–CsCl eutectic melts at a lower temperature of 873 K to suppress the growth of crystal grains. XRD confirmed the existence of both α-W and β-W phases in the W coatings deposited in the CsF–CsCl eutectic melts. SEM analyses revealed the successful formation of dense and smooth W coatings with ~30 μm thickness in the CsF–CsCl eutectic melts.

この論文で使われている画像

参考文献

1. S. Senderoff and G. Mellors, Science, 153, 1475 (1966).

2. V. V. Malyshev, Mater. Sci., 47, 345 (2011).

3. K. H. Stern (ed.), Metallurgical and Ceramic Protective Coatings (Springer,

Berlin: Dordrecht) Chap. 2, p. 31 (1996).

4. M. Masuda, H. Takenishi, and A. Katagiri, J. Electrochem. Soc., 148, C59 (2001).

5. J. Li, X. Zhang, Y. Liu, Y. Li, and R. Liu, Rare Met., 32, 512 (2013).

6. Y. Qi, Y. Tang, B. Wang, M. Zhang, X. Ren, Y. Li, and Y. Ma, Int. J. Refract. Met.

Hard Mater., 81, 183 (2019).

7. V. A. Pavlovskii, Inorg. Mater., 40, 372 (2004).

8. V. A. Pavlovskii, Inorg. Mater., 39, 1208 (2004).

9. K. Koyama, M. Morishita, and T. Umezu, Electrochemistry, 67, 667 (1999).

10. D. R. Lide (ed.), CRC Handbook of Chemistry and Physics (CRC Press, Boca

Raton, FL) 88th ed., Chap. 4, p. 43 (2007).

11. K. Maeda, K. Yasuda, T. Nohira, R. Hagiwara, and T. Homma, J. Electrochem.

Soc., 162, D444 (2015).

12. Y. Norikawa, K. Yasuda, and T. Nohira, Mater. Trans., 58, 390 (2017).

13. Y. Norikawa, K. Yasuda, and T. Nohira, Electrochemistry, 86, 99 (2018).

14. Y. Norikawa, K. Yasuda, and T. Nohira, J. Electrochem. Soc., 166, D755 (2019).

15. A. S. Krylov, S. N. Sofronova, E. M. Kolensnikova, Y. N. Ivanov, A. A. Sukhovsky,

S. V. Goryainov, A. A. Ivanenko, N. P. Shestakov, A. G. Kocharova, and

A. N. Vtyurin, J. Solid State Chem., 218, 32 (2014).

16. M. S. Molokeev, S. V. Misyul, V. D. Fokina, A. G. Kocharova, and

K. S. Aleksandrov, Phys. Solid State, 53, 834 (2011).

17. Y. Norikawa, K. Yasuda, and T. Nohira, J. Electrochem. Soc., 167, 082502

(2020).

18. M. Unoki, Y. Norikawa, K. Yasuda, and T. Nohira, ECS Trans., 98, 393 (2020).

19. Q. Hao, W. Chen, and G. Xiao, Appl. Phys. Lett., 106, 182403 (2015).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る