リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of Temperature, Ti(III) Ion Concentration, and Current Density on Electrodeposition of Ti Films in LiF-LiCl Melt」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of Temperature, Ti(III) Ion Concentration, and Current Density on Electrodeposition of Ti Films in LiF-LiCl Melt

Norikawa, Yutaro Unoki, Makoto Yasuda, Kouji Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/ac91fe

2022.09

概要

The effects of temperature, Ti(III) ion concentration, and current density on the electrodeposition of Ti films were investigated in the eutectic LiF–LiCl melt at 823–973 K. The Ti(III) ions were prepared by adding Li₂TiF₆ and Ti metal to the melt. The diffusion coefficients of Ti(III) were 1.4, 1.8, 2.3, and 3.2 × 10⁻⁵ m² s⁻¹, at 823, 873, 923, and 973 K, respectively. Galvanostatic electrolysis was conducted at 823–973 K. The surface roughness (Sa) of the Ti films decreases with decreasing temperature. Thus, the electrodeposition of Ti films was conducted at the lowest temperature of 823 K with various Li3TiF6 concentrations (0.55–7.1 mol%) and cathodic current densities (50–1200 mA cm⁻²). The Sa was lower at higher Ti(III) ion concentrations and lower current densities. The smoothest Ti films with a Sa of 1.23 μm and a thickness of 10 μm were obtained at a cathodic current density of 50 mA cm⁻² and Li₃TiF₆ concentration of 7.1 mol%.

この論文で使われている画像

参考文献

1. M. B. Alpert, F. J. Schultz, and W. F. Sullivan, J. Electrochem. Soc., 104, 555 (1957).

2. B. J. Fortin, J. G. Wurm, L. Gravel, and R. J. A. Potvin, J. Electrochem. Soc., 106, 428 (1959).

3. A. Menzies, D. L. Hill, G. J. Hills, L. Young, and J. O. M. Bockris, J. Electroanal. Chem., 1, 161 (1959).

4. G. M. Haarberg, W. Rolland, A. Sterten, and J. Thonstad, J. Appl. Electrochem., 23, 217 (1993).

5. H. Takamura, I. Ohno, and H. Numata, J. Jpn. Inst. Metals, 60, 388 (1996).

6. X. Ning, H. Asheim, H. Ren, S. Jiao, and H. Zhu, Metall. Mater. Trans. B, 42, 1181 (2011).

7. T. Yuan, Q.-g Weng, Z. Zhou, J. Li, and Y.-h He, Adv. Mater. Res., 284–286, 1477 (2011).

8. M. H. Kang, J. Song, H. Zhu, and S. Jiao, Metall. Mater. Trans. B, 46, 162 (2015).

9. J. Song, Q. Wang, M. Kang, and S. Jiao, Int. J. Electrochem. Sci., 10, 919 (2015).

10. S. Wang, C. Wan, X. Liu, and L. Li, Metall. Mater. Trans. E, 2, 250 (2015).

11. S. Tokumoto, E. Tanaka, and K. Ogisu, JOM, 27, 18 (1975).

12. J. G. Gussone and J. M. Hausmann, J. Appl. Electrochem., 41, 657 (2011).

13. J. Song, Q. Wang, X. Zhu, J. Hou, S. Jiao, and H. Zhu, Mater. Trans., 55, 1299 (2014).

14. A. Kishimoto, Y. Yamada, K. Funatsu, and T. Uda, Adv. Eng. Mater., 22, 1900747 (2019).

15. K. Kumamoto, A. Kishimoto, and T. Uda, Mater. Trans., 61, 1651 (2020).

16. K. Matiašovsky, Ž. Lubyovà, and V. Daněk, Electrodepos. Surface Treat., 1, 43 (1972).

17. J. De Lepinay, J. Bouteillon, S. Traore, D. Renaud, and M. J. Barbier, J. Appl. Electrochem., 17, 294 (1987).

18. A. Robin, J. De Lepinay, and M. J. Barbier, J. Electroanal. Chem., 230, 125 (1987).

19. A. Robin, Mater. Lett., 34, 196 (1998).

20. A. Robin and R. B. Ribeiro, J. Appl. Electrochem., 30, 239 (2000).

21. M. E. Sibert and M. A. Steinberg, J. Electrochem. Soc., 102, 641 (1955).

22. J. G. Wurm, L. Gravel, and R. J. A. Potvin, J. Electrochem. Soc., 104, 301 (1957).

23. D. Wei, T. Tada, and T. Oki, ISIJ Int., 33, 1016 (1993).

24. D. Wei, M. Okido, and T. Oki, J. Appl. Electrochem., 24, 923 (1994).

25. J. H. von Barner, P. Noye, A. Barhoun, and F. Lantelme, J. Electrochem. Soc., 152, C20 (2005).

26. V. V. Malyshev and D. B. Shakhnin, Mater. Sci., 50, 80 (2014).

27. Y. Norikawa, K. Yasuda, and T. Nohira, Mater. Trans., 58, 390 (2017).

28. Y. Norikawa, K. Yasuda, and T. Nohira, Electrochemistry, 86, 99 (2018).

29. Y. Norikawa, K. Yasuda, and T. Nohira, J. Electrochem. Soc., 166, D755 (2019).

30. Y. Norikawa, K. Yasuda, and T. Nohira, J. Electrochem. Soc., 167, 082502 (2020).

31. J. Sangster and A. D. Pelton, J. Phys. Chem. Ref. Data, 16, 509 (1987).

32. R. S. Nicholson and I. Shain, Anal. Chem., 36, 706 (1964).

33. G. J. Janz, J. Phys. Chem. Ref, Data, 17, Suppl. 2, 1 (1988).

34. A. Einstein, Investigations on the Theory of the Brownian Movement (Dover Publications Inc, New York, NY) (1956).

35. K. Okazaki and H. Conrad, Metall. Trans., 3, 2411 (1972).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る