リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tomato root-associated Sphingobium harbors genes for catabolizing toxic steroidal glycoalkaloids」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tomato root-associated Sphingobium harbors genes for catabolizing toxic steroidal glycoalkaloids

Nakayasu, Masaru Takamatsu, Kyoko Kanai, Keiko Masuda, Sachiko Yamazaki, Shinichi Aoki, Yuichi Shibata, Arisa Suda, Wataru Shirasu, Ken Yazaki, Kazufumi Sugiyama, Akifumi 京都大学 DOI:10.1128/mbio.00599-23

2023.10.31

概要

Plant roots exude various organic compounds, including plant specialized metabolites (PSMs), into the rhizosphere. The secreted PSMs enrich specific microbial taxa to shape the rhizosphere microbiome, which is crucial for the healthy growth of the host plants. PSMs often exhibit biological activities; in turn, some microorganisms possess the capability to either resist or detoxify them. Saponins are structurally diverse triterpene-type PSMs that are mainly produced by angiosperms. They are generally considered as plant defense compounds. We have revealed that α-tomatine, a steroid-type saponin secreted from tomato (Solanum lycopersicum) roots, increases the abundance of Sphingobium bacteria. To elucidate the mechanisms underlying the α-tomatine-mediated enrichment of Sphingobium, we isolated Sphingobium spp. from tomato roots and characterized their saponin-catabolizing abilities. We obtained the whole-genome sequence of Sphingobium sp. RC1, which degrades steroid-type saponins but not oleanane-type ones, and performed a gene cluster analysis together with a transcriptome analysis of α-tomatine degradation. The in vitro characterization of candidate genes identified six enzymes that hydrolyzed the different sugar moieties of steroid-type saponins at different positions. In addition, the enzymes involved in the early steps of the degradation of sapogenins (i.e., aglycones of saponins) were identified, suggesting that orthologs of the known bacterial steroid catabolic enzymes can metabolize sapogenins. Furthermore, a comparative genomic analysis revealed that the saponin-degrading enzymes were present exclusively in certain strains of Sphingobium spp., most of which were isolated from tomato roots or α-tomatine-treated soil. Taken together, these results suggest a catabolic pathway for highly bioactive steroid-type saponins in the rhizosphere.

この論文で使われている画像

参考文献

1.

2.

3.

4.

Hartmann A, Rothballer M, Schmid M. 2008. Lorenz Hiltner, a pioneer in

rhizosphere microbial ecology and soil bacteriology research. Plant Soil

312:7–14. https://doi.org/10.1007/s11104-007-9514-z

Guerrieri A, Dong LM, Bouwmeester HJ. 2019. Role and exploitation of

underground chemical signaling in plants. Pest Manag Sci 75:2455–

2463. https://doi.org/10.1002/ps.5507

Massalha H, Korenblum E, Tholl D, Aharoni A. 2017. Small molecules

below-ground: the role of specialized metabolites in the rhizosphere.

Plant J 90:788–807. https://doi.org/10.1111/tpj.13543

Pascale A, Proietti S, Pantelides IS, Stringlis IA. 2019. Modulation of the

root microbiome by plant molecules: the basis for targeted disease

September/October 2023 Volume 14

Issue 5

5.

6.

7.

suppression and plant growth promotion. Front Plant Sci 10:1741. https:

//doi.org/10.3389/fpls.2019.01741

Jacoby RP, Koprivova A, Kopriva S. 2021. Pinpointing secondary

metabolites that shape the composition and function of the plant

microbiome. J Exp Bot 72:57–69. https://doi.org/10.1093/jxb/eraa424

Sugiyama A. 2021. Flavonoids and saponins in plant rhizospheres: roles,

dynamics, and the potential for agriculture. Biosci Biotechnol Biochem

85:1919–1931. https://doi.org/10.1093/bbb/zbab106

Harbort CJ, Hashimoto M, Inoue H, Niu Y, Guan R, Rombolà AD, Kopriva

S, Voges M, Sattely ES, Garrido-Oter R, Schulze-Lefert P. 2020. Rootsecreted coumarins and the microbiota interact to improve iron

10.1128/mbio.00599-23 18

Downloaded from https://journals.asm.org/journal/mbio on 31 October 2023 by 130.54.130.253.

Supplemental Material

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

nutrition in Arabidopsis. Cell Host Microbe 28:825–837. https://doi.org/

10.1016/j.chom.2020.09.006

Hu L, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N,

Steinger T, van der Heijden MGA, Schlaeppi K, Erb M. 2018. Root exudate

metabolites drive plant-soil feedbacks on growth and defense by

shaping the rhizosphere microbiota. Nat Commun 9:13. https://doi.org/

10.1038/s41467-018-05122-7

Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang X, Deichmann M,

Frey FP, Bresgen V, Li C, Razavi BS, Schaaf G, von Wirén N, Su Z, Bucher M,

Tsuda K, Goormachtig S, Chen X, Hochholdinger F. 2021. Plant flavones

enrich rhizosphere Oxalobacteraceae to improve maize performance

under nitrogen deprivation. Nat Plants 7:481–499. https://doi.org/10.

1038/s41477-021-00897-y

Zhong Y, Xun WB, Wang XH, Tian SW, Zhang YC, Li DW, Zhou Y, Qin YX,

Zhang B, Zhao GW, Cheng X, Liu YG, Chen HM, Li LG, Osbourn A, Lucas

WJ, Huang SW, Ma YS, Shang Y. 2022. Root-secreted bitter triterpene

modulates the rhizosphere microbiota to improve plant fitness. Nat

Plants 8:887–896. https://doi.org/10.1038/s41477-022-01201-2

He D, Singh SK, Peng L, Kaushal R, Vílchez JI, Shao C, Wu X, Zheng S,

Morcillo RJL, Paré PW, Zhang H. 2022. Flavonoid-attracted Aeromonas sp.

from the Arabidopsis root microbiome enhances plant dehydration

resistance. ISME J 16:2622–2632. https://doi.org/10.1038/s41396-02201288-7

Sparg SG, Light ME, van Staden J. 2004. Biological activities and

distribution of plant saponins. J Ethnopharmacol 94:219–243. https://

doi.org/10.1016/j.jep.2004.05.016

Moses T, Papadopoulou KK, Osbourn A. 2014. Metabolic and functional

diversity of saponins, biosynthetic intermediates and semi-synthetic

derivatives. Crit Rev Biochem Mol Biol 49:439–462. https://doi.org/10.

3109/10409238.2014.953628

Cárdenas PD, Almeida A, Bak S. 2019. Evolution of structural diversity of

triterpenoids. Front Plant Sci 10:1523. https://doi.org/10.3389/fpls.2019.

01523

Miettinen K, Iñigo S, Kreft L, Pollier J, De Bo C, Botzki A, Coppens F, Bak S,

Goossens A. 2018. The TriForC database: a comprehensive up-to-date

resource of plant triterpene biosynthesis. Nucleic Acids Res 46:D586–

D594. https://doi.org/10.1093/nar/gkx925

Kitagawa I. 2002. Licorice root. A-natural sweetener and an important

ingredient in Chinese medicine. Pure and Applied Chemistry 74:1189–

1198. https://doi.org/10.1351/pac200274071189

Sautour M, Mitaine­Offer AC, Lacaille-Dubois MA. 2007. The Dioscorea

genus: a review of bioactive steroid saponins. J Nat Med 61:91–101.

https://doi.org/10.1007/s11418-006-0126-3

Friedman M. 2002. Tomato glycoalkaloids: role in the plant and in the

diet. J Agric Food Chem 50:5751–5780. https://doi.org/10.1021/

jf020560c

Friedman M. 2006. Potato glycoalkaloids and metabolites: roles in the

plant and in the diet. J Agric Food Chem 54:8655–8681. https://doi.org/

10.1021/jf061471t

Vincken J-P, Heng L, de Groot A, Gruppen H. 2007. Saponins, classifica­

tion and occurrence in the plant kingdom. Phytochemistry 68:275–297.

https://doi.org/10.1016/j.phytochem.2006.10.008

Oleszek W, Jurzysta M, Gorski P. 1992. Alfalfa saponins—the allelopathic

agents, p 151–167. In Allelopathy: basic and applied aspects: https://doi.

org/10.1007/978-94-011-2376-1

Faizal A, Geelen D. 2013. Saponins and their role in biological processes

in plants. Phytochem Rev 12:877–893. https://doi.org/10.1007/s11101013-9322-4

Hussain M, Debnath B, Qasim M, Bamisile BS, Islam W, Hameed MS,

Wang L, Qiu D. 2019. Role of saponins in plant defense against specialist

herbivores.

Molecules

24:2067.

https://doi.org/10.3390/mole­

cules24112067

Nakayasu M, Shioya N, Shikata M, Thagun C, Abdelkareem A, Okabe Y,

Ariizumi T, Arimura G-I, Mizutani M, Ezura H, Hashimoto T, Shoji T. 2018.

JRE4 is a master transcriptional regulator of defense-related steroidal

glycoalkaloids in tomato. Plant J 94:975–990. https://doi.org/10.1111/tpj.

13911

Papadopoulou K, Melton RE, Leggett M, Daniels MJ, Osbourn AE. 1999.

Compromised disease resistance in saponin­deficient plants. Proc Natl

Acad Sci U S A 96:12923–12928. https://doi.org/10.1073/pnas.96.22.

12923

September/October 2023 Volume 14

Issue 5

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Tsuno Y, Fujimatsu T, Endo K, Sugiyama A, Yazaki K. 2018. Soyasaponins:

a new class of root exudates in soybean (Glycine max). Plant Cell Physiol

59:366–375. https://doi.org/10.1093/pcp/pcx192

Fujimatsu T, Endo K, Yazaki K, Sugiyama A. 2020. Secretion dynamics of

soyasaponins in soybean roots and effects to modify the bacterial

composition. Plant Direct 4:e00259. https://doi.org/10.1002/pld3.259

Nakayasu M, Ohno K, Takamatsu K, Aoki Y, Yamazaki S, Takase H, Shoji T,

Yazaki K, Sugiyama A. 2021. Tomato roots secrete tomatine to modulate

the bacterial assemblage of the rhizosphere. Plant Physiol 186:270–284.

https://doi.org/10.1093/plphys/kiab069

Nakayasu M, Takamatsu K, Yazaki K, Sugiyama A. 2022. Plant specialized

metabolites in the rhizosphere of tomatoes: secretion and effects on

microorganisms. Biosci Biotechnol Biochem 87:13–20. https://doi.org/

10.1093/bbb/zbac181

Hennessy RC, Jørgensen NOG, Scavenius C, Enghild JJ, Greve-Poulsen M,

Sørensen OB, Stougaard P. 2018. A screening method for the isolation of

bacteria capable of degrading toxic steroidal glycoalkaloids present in

potato. Front Microbiol 9:2648. https://doi.org/10.3389/fmicb.2018.

02648

Navarro del Hierro J, Herrera T, Fornari T, Reglero G, Martin D. 2018. The

gastrointestinal behavior of saponins and its significance for their

bioavailability and bioactivities. J Func Foods 40:484–497. https:​/​/​doi.

org/​10.1016/​j.jff.2017.11.032

He Y, Hu Z, Li A, Zhu Z, Yang N, Ying Z, He J, Wang C, Yin S, Cheng S.

2019. Recent advances in biotransformation of saponins. Molecules

24:2365. https://doi.org/10.3390/molecules24132365

Zhang S, Shu J, Xue H, Zhang W, Zhang Y, Liu Y, Fang L, Wang Y, Wang H,

Heck M. 2020. The gut microbiota in camellia weevils are influenced by

plant secondary metabolites and contribute to saponin degradation.

mSystems 5:e00692-19. https://doi.org/10.1128/mSystems.00692-19

Osbourn AE, Clarke BR, Dow JM, Daniels MJ. 1991. Partial characteriza­

tion of avenacinase from Gaeumannomyces-graminis VAR avenae.

Physiolo Molecul Plant Pathol 38:301–312. https://doi.org/10.1016/

S0885-5765(05)80121-3

Lairini K, Perez-Espinosa A, Pineda M, Ruiz-Rubio M. 1996. Purification

and characterization of tomatinase from Fusarium oxysporum f sp

lycopersici. Appl Environ Microbiol 62:1604–1609. https://doi.org/10.

1128/aem.62.5.1604-1609.1996

Sandrock RW, DellaPenna D, VanEtten HD. 1995. Purification and

characterization of Beta2-tomatinase, an enzyme involved in the

degradation of alpha-tomatine and isolation of the gene encoding

Beta2-tomatinase from Septoria lycopersici. Mol Plant Microbe Interact

8:960–970. https://doi.org/10.1094/mpmi-8-0960

Quidde T, Osbourn AE, Tudzynski P. 1998. Detoxification of α-tomatine

by Botrytis cinerea. Physiol Mol Plant Pathol 52:151–165. https://doi.org/

10.1006/pmpp.1998.0142

Becker P, Weltring KM. 1998. Purification and characterization of αchaconinase of Gibberella pulicaris. FEMS Microbiol Lett 167:197–202.

https://doi.org/10.1111/j.1574-6968.1998.tb13228.x

Horinouchi M, Koshino H, Malon M, Hirota H, Hayashi T. 2019. Steroid

degradation in comamonas testosteroni TA441: identification of the

entire β-oxidation cycle of the cleaved B ring. Appl Environ Microbiol

85:e01204-19. https://doi.org/10.1128/AEM.01204-19

Ibero J, Galán B, Díaz E, García JL. 2019. Testosterone degradative

pathway of Novosphingobium tardaugens Genes 10:871. https://doi.org/

10.3390/genes10110871

Nakayasu M, Ikeda K, Yamazaki S, Aoki Y, Yazaki K, Washida H, Sugiyama

A. 2021. Two distinct soil disinfestations differently modify the bacterial

communities in a tomato field. Agronomy 11:1375. https://doi.org/10.

3390/agronomy11071375

Manni M, Berkeley MR, Seppey M, Simão FA, Zdobnov EM. 2021. BUSCO

update: novel and streamlined workflows along with broader and

deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic,

and viral genomes. Mol Biol Evol 38:4647–4654. https://doi.org/10.1093/

molbev/msab199

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation.

Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/

btu153

Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, Busk PK, Xu Y, Yin Y.

2018. dbCAN2: a meta server for automated carbohydrate-active

10.1128/mbio.00599-23 19

Downloaded from https://journals.asm.org/journal/mbio on 31 October 2023 by 130.54.130.253.

mBio

Research Article

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

enzyme annotation. Nucleic Acids Res 46:W95–W101. https://doi.org/10.

1093/nar/gky418

Shin KC, Oh DK. 2016. Classification of glycosidases that hydrolyze the

specific positions and types of sugar moieties in ginsenosides. Crit Rev

Biotechnol

36:1036–1049.

https://doi.org/10.3109/07388551.2015.

1083942

Mensitieri F, De Lise F, Strazzulli A, Moracci M, Notomista E, Cafaro V,

Bedini E, Sazinsky MH, Trifuoggi M, Di Donato A, Izzo V. 2018. Structural

and functional insights into RHA-P, a bacterial GH106 α-L-rhamnosidase

from Novosphingobium sp. PP1Y. Arch Biochem Biophys 648:1–11. https:/

/doi.org/10.1016/j.abb.2018.04.013

Teufel F, Almagro Armenteros JJ, Johansen AR, Gíslason MH, Pihl SI,

Tsirigos KD, Winther O, Brunak S, von Heijne G, Nielsen H. 2022. Signalp

6.0 predicts all five types of signal peptides using protein language

models. Nat Biotechnol 40:1023–1025. https://doi.org/10.1038/s41587021-01156-3

Roldán-Arjona T, Pérez-Espinosa A, Ruiz-Rubio M. 1999. Tomatinase from

Fusarium oxysporum f. sp lycopersici defines a new class of saponinases.

Mol Plant Microbe Interact 12:852–861. https://doi.org/10.1094/MPMI.

1999.12.10.852

Ökmen B, Etalo DW, Joosten M, Bouwmeester HJ, de Vos RCH, Collemare

J, de Wit P. 2013. Detoxification of α-tomatine by Cladosporium fulvum is

required for full virulence on tomato. New Phytol 198:1203–1214. https:/

/doi.org/10.1111/nph.12208

Osbourn A, Bowyer P, Lunness P, Clarke B, Daniels M. 1995. Fungal

pathogens of oat roots and tomato leaves employ closely related

enzymes to detoxify different host plant saponins. Mol Plant Microbe

Interact 8:971–978. https://doi.org/10.1094/mpmi-8-0971

Hong H, Cui CH, Kim JK, Jin FX, Kim SC, Im WT. 2012. Enzymatic

biotransformation of ginsenoside RB1 and gypenoside XVII into

ginsenosides RD and F2 by recombinant β-glucosidase from

Flavobacterium johnsoniae. J Ginseng Res 36:418–424. https://doi.org/10.

5142/jgr.2012.36.4.418

Lee JH, Hyun Y-J, Kim D-H. 2011. Cloning and characterization of α-Larabinofuranosidase and bifunctional α-L-arabinopyranosidase/β-Dgalactopyranosidase from Bifidobacterium longum H-1. J Appl Microbiol

111:1097–1107. https://doi.org/10.1111/j.1365-2672.2011.05128.x

Abbott W, Alber O, Bayer E, Berrin JG, Boraston A, Brumer H, Brzezinski R,

Clarke A, Cobucci-Ponzano B, Cockburn D, Coutinho P, Czjzek M, Dassa

B, Davies GJ, Eijsink V, Eklof J, Felice A, Ficko-Blean E, Pincher G, Fontaine

T, Fujimoto Z, Fujita K, Fushinobu S, Gilbert H, Gloster T, Goddard-Borger

E, Greig I, Hehemann JH, Hemsworth G, Henrissat B, Hidaka M, HurtadoGuerrero R, Igarashi K, Ishida T, Janecek S, Jongkees S, Juge N, Kaneko S,

Katayama T, Kitaoka M, Konno N, Kracher D, Kulminskaya A, Bueren AL,

Larsen S, Lee J, Linder M, LoLeggio L, Ludwig R, Luis A. 2018. Ten years of

CAZypedia: a living encyclopedia of carbohydrate-active enzymes.

Glycobiology 28:3–8. https://doi.org/10.1093/glycob/cwx089

Shin KC, Seo MJ, Oh DK. 2014. Characterization of β-xylosidase from

thermoanaerobacterium thermosaccharolyticum and its application to

the production of ginsenosides RG(1) and RH-1 from notoginsenosides

R-1 and R-2. Biotechnol Lett 36:2275–2281. https://doi.org/10.1007/

s10529-014-1604-4

Zhang R, Li N, Xu SJ, Han XW, Li CY, Wei X, Liu Y, Tu T, Tang XH, Zhou JP,

Huang ZX. 2019. Glycoside hydrolase family 39 β-xylosidases exhibit

β-1,2-xylosidase activity for transformation of notoginsenosides: a new

EC subsubclass. J Agric Food Chem 67:3220–3228. https://doi.org/10.

1021/acs.jafc.9b00027

Shen YF, Li ZY, Huo YY, Bao LY, Gao BC, Xiao P, Hu XJ, Xu XW, Li JX. 2019.

Structural and functional insights Into CmGH1, a novel GH39 family βglucosidase from deep-sea bacterium. Front Microbiol 10:2922. https://

doi.org/10.3389/fmicb.2019.02922

Yu HS, Gong JM, Zhang CZ, Jin FX. 2002. Purification and characteriza­

tion of ginsenoside-α-L-rhamnosidase. Chem Pharm Bull (Tokyo)

50:175–178. https://doi.org/10.1248/cpb.50.175

Hennessy RC, Nielsen SD, Greve-Poulsen M, Larsen LB, Sørensen OB,

Stougaard P. 2020. Discovery of a bacterial gene cluster for deglycosyla­

tion of toxic potato steroidal glycoalkaloids α-chaconine and α-solanine.

J Agric Food Chem 68:1390–1396. https://doi.org/10.1021/acs.jafc.

9b07632

Wang WQ, Du GZ, Yang GY, Zhang K, Chen B, Xiao GL. 2022. A

multifunctional enzyme portfolio for α-chaconine and α-solanine

September/October 2023 Volume 14

Issue 5

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

degradation in the Phthorimaea operculella gut bacterium Glutamici­

bacter halophytocola S2 encoded in a trisaccharide utilization locus.

Front Microbiol 13. https://doi.org/10.3389/fmicb.2022.1023698

Holert J, Cardenas E, Bergstrand LH, Zaikova E, Hahn AS, Hallam SJ,

Mohn WW. 2018. Metagenomes reveal global distribution of bacterial

steroid catabolism in natural, engineered, and host environments. mBio

9:e02345-17. https://doi.org/10.1128/mBio.02345-17

Benveniste P. 2004. Biosynthesis and accumulation of sterols. Annu Rev

Plant Biol 55:429–457. https://doi.org/10.1146/annurev.arplant.55.

031903.141616

Schaller H. 2004. New aspects of Sterol biosynthesis in growth and

development of higher plants. Plant Physiol Biochem 42:465–476. https:/

/doi.org/10.1016/j.plaphy.2004.05.012

Fujii K, Satomi M, Morita N, Motomura T, Tanaka T, Kikuchi S. 2003.

Novosphingobium tardaugens sp nov., an oestradiol-degrading

bacterium isolated from activated sludge of a sewage treatment plant in

Tokyo. Int J Syst Evol Microbiol 53:47–52. https://doi.org/10.1099/ijs.0.

02301-0

van Der Geize R, Hessels GI, van Gerwen R, Vrijbloed JW, van Der

Meijden P, Dijkhuizen L. 2000. Targeted disruption of the kstD gene

encoding a 3-ketosteroid delta(1)-dehydrogenase isoenzyme of

rhodococcus erythropolis strain sq1. Appl Environ Microbiol 66:2029–

2036. https://doi.org/10.1128/AEM.66.5.2029-2036.2000

Griffin JE, Pandey AK, Gilmore SA, Mizrahi V, Mckinney JD, Bertozzi CR,

Sassetti CM. 2012. Cholesterol catabolism by Mycobacterium tuberculosis

requires transcriptional and metabolic adaptations. Chem Biol 19:218–

227. https://doi.org/10.1016/j.chembiol.2011.12.016

Yu CP, Roh H, Chu KH. 2007. 17 β-estradiol-degrading bacteria isolated

from activated sludge. Environ Sci Technol 41:486–492. https://doi.org/

10.1021/es060923f

Horinouchi M, Hayashi T, Kudo T. 2012. Steroid degradation in

comamonas testosteroni. J Steroid Biochem Mol Biol 129:4–14. https://

doi.org/10.1016/j.jsbmb.2010.10.008

Belic I, Socic H. 1972. Microbial dehydrogenation of tomatidine. J Steroid

Biochem 3:843–846. https://doi.org/10.1016/0022-4731(72)90037-4

Belic I, Hirsl-Pintaric V, Sociĭc H, Vranjek B. 1975. Microbial cleavage of

the tomatidine spiroketal sidechain. J Steroid Biochem 6:1211–1212.

https://doi.org/10.1016/0022-4731(75)90107-7

Bowyer P, Clarke BR, Lunness P, Daniels MJ, Osbourn AE. 1995. Hostrange of a plant-pathogenic fungus determined by a saponin

detoxifying enzyme. Science 267:371–374. https://doi.org/10.1126/

science.7824933

Melton RE, Flegg LM, Brown JKM, Oliver RP, Daniels MJ, Osbourn AE.

1998. Heterologous expression of Septoria lycopersici tomatinase in

Cladosporium fulvum: effects on compatible and incompatible

interactions with tomato seedlings. Mol Plant Microbe Interact 11:228–

236. https://doi.org/10.1094/MPMI.1998.11.3.228

Shimasaki T, Masuda S, Garrido-Oter R, Kawasaki T, Aoki Y, Shibata A,

Suda W, Shirasu K, Yazaki K, Nakano RT, Sugiyama A, Guttman DS. 2021.

Tobacco root endophytic arthrobacter harbors genomic features

enabling the catabolism of host­specific plant specialized metabolites.

mBio 12:e0084621. https://doi.org/10.1128/mBio.00846-21

Huang AC, Jiang T, Liu Y-X, Bai Y-C, Reed J, Qu B, Goossens A, Nützmann

H-W, Bai Y, Osbourn A. 2019. A specialized metabolic network selectively

modulates Arabidopsis root microbiota. Science 364:eaau6389. https://

doi.org/10.1126/science.aau6389

Wei GF, Chen ZJ, Wang B, Wei FG, Zhang GZ, Wang Y, Zhu GW, Zhou YX,

Zhao QH, He MJ, Dong LL, Chen SL. 2021. Endophytes isolated from

Panax notoginseng converted ginsenosides. Microb Biotechnol 14:1730–

1746. https://doi.org/10.1111/1751-7915.13842

Okutani F, Hamamoto S, Aoki Y, Nakayasu M, Nihei N, Nishimura T,

Yazaki K, Sugiyama A. 2020. Rhizosphere modelling reveals spatiotem­

poral distribution of daidzein shaping soybean rhizosphere bacterial

community. Plant Cell Environ 43:1036–1046. https://doi.org/10.1111/

pce.13708

Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad

N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J,

Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P. 2012. Revealing

structure and assembly cues for Arabidopsis root-inhabiting bacterial

microbiota. Nature 488:91–95. https://doi.org/10.1038/nature11336

10.1128/mbio.00599-23 20

Downloaded from https://journals.asm.org/journal/mbio on 31 October 2023 by 130.54.130.253.

mBio

Research Article

77.

78.

79.

80.

81.

82.

mBio

Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M,

Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B,

McHardy AC, Vorholt JA, Schulze-Lefert P. 2015. Functional overlap of

the Arabidopsis leaf and root microbiota. Nature 528:364–369. https://

doi.org/10.1038/nature16192

Devers M, Soulas G, Martin-Laurent F. 2004. Real-time reverse

transcription PCR analysis of expression of atrazine catabolism genes in

two bacterial strains isolated from soil. J Microbiol Methods 56:3–15.

https://doi.org/10.1016/j.mimet.2003.08.015

Hahn M, Hennecke H. 1984. Localized mutagenesis in rhizobiumjaponicum. Molec Gen Genet 193:46–52. https://doi.org/10.1007/

BF00327412

Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. 2015. Circlator:

automated circularization of genome assemblies using long sequencing

reads. Genome Biol 16:294. https://doi.org/10.1186/s13059-015-0849-0

Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S,

Ogata H. 2020. Kofamkoala: KEGG ortholog assignment based on profile

HMM and adaptive score threshold. Bioinformatics 36:2251–2252. https:

//doi.org/10.1093/bioinformatics/btz859

Shilling PJ, Mirzadeh K, Cumming AJ, Widesheim M, Köck Z, Daley DO.

2020. Improved designs for pET expression plasmids increase protein

September/October 2023 Volume 14

Issue 5

83.

84.

85.

86.

87.

production yield in Escherichia coli. Commun Biol 3:214. https://doi.org/

10.1038/s42003-020-0939-8

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes

M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale

prokaryote pan genome analysis. Bioinformatics 31:3691–3693. https://

doi.org/10.1093/bioinformatics/btv421

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment

software version 7: improvements in performance and usability. Mol Biol

Evol 30:772–780. https://doi.org/10.1093/molbev/mst010

Price MN, Dehal PS, Arkin AP. 2009. Fasttree: computing large minimum

evolution trees with profiles instead of a distance matrix. Mol Biol Evol

26:1641–1650. https://doi.org/10.1093/molbev/msp077

Letunic I, Bork P. 2007. Interactive tree of life (iTOL): an online tool for

phylogenetic tree display and annotation. Bioinformatics 23:127–128.

https://doi.org/10.1093/bioinformatics/btl529

Bray NL, Pimentel H, Melsted P, Pachter L. 2016. Near-optimal probabilis­

tic RNA-seq quantification. Nat Biotechnol 34:525–527. https://doi.org/

10.1038/nbt0816-888d

10.1128/mbio.00599-23 21

Downloaded from https://journals.asm.org/journal/mbio on 31 October 2023 by 130.54.130.253.

Research Article

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る