リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Apoplast-localized β-Glucosidase Elevates Isoflavone Accumulation in the Soybean Rhizosphere」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Apoplast-localized β-Glucosidase Elevates Isoflavone Accumulation in the Soybean Rhizosphere

Matsuda, Hinako Yamazaki, Yumi Moriyoshi, Eiko Nakayasu, Masaru Yamazaki, Shinichi Aoki, Yuichi Takase, Hisabumi Okazaki, Shin Nagano, Atsushi J Kaga, Akito Yazaki, Kazufumi Sugiyama, Akifumi 京都大学 DOI:10.1093/pcp/pcad012

2023.05

概要

Plant specialized metabolites (PSMs) are often stored as glycosides within cells and released from the roots with some chemical modifications. While isoflavones are known to function as symbiotic signals with rhizobia and to modulate the soybean rhizosphere microbiome, the underlying mechanisms of root-to-soil delivery are poorly understood. In addition to transporter-mediated secretion, the hydrolysis of isoflavone glycosides in the apoplast by an isoflavone conjugate-hydrolyzing β-glucosidase (ICHG) has been proposed but not yet verified. To clarify the role of ICHG in isoflavone supply to the rhizosphere, we have isolated two independent mutants defective in ICHG activity from a soybean high-density mutant library. In the root apoplastic fraction of ichg mutants, the isoflavone glycosides contents were significantly increased while isoflavone aglycone contents were decreased, indicating that ICHG hydrolyzes isoflavone glycosides into aglycones in the root apoplast. When grown in a field, the lack of ICHG activity considerably reduced isoflavone aglycone contents in roots and the rhizosphere soil, although the transcriptomes showed no distinct differences between the ichg mutants and WTs. Despite the change in isoflavone contents and composition of the root and rhizosphere of the mutants, root and rhizosphere bacterial communities were not distinctive from those of the WTs. Root bacterial communities and nodulation capacities of the ichg mutants did not differ from the WTs under nitrogen-deficient conditions, either. Taken together, these results indicate that ICHG elevates the accumulation of isoflavones in the soybean rhizosphere but is not essential in isoflavone-mediated plant-microbe interactions.

参考文献

880

Abedini D, Jaupitre S, Bouwmeester H, Dong L (2021) Metabolic interactions in

881

beneficial microbe recruitment by plants. Curr Opin Biotechnol 70: 241–247

882

Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K,

883

Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, et al (2012)

884

KNApSAcK family databases: integrated metabolite-plant species databases for

885

multifaceted plant research. Plant Cell Physiol 53: e1

886

Ahmad MZ, Zhang Y, Zeng X, Li P, Wang X, Benedito VA, Zhao J (2021) Isoflavone

887

malonyl-CoA acyltransferase GmMaT2 is involved in nodulation of soybean by

888

modifying synthesis and secretion of isoflavones. J Exp Bot 72: 1349–1369

889

Barrett T, Suresh CG, Tolley SP, Dodson EJ, Hughes MA (1995) The crystal structure

890

of a cyanogenic β-glucosidase from white clover, a family 1 glycosyl hydrolase.

891

Structure 3: 951–960

892

Biala W, Banasiak J, Jarzyniak K, Pawela A, Jasinski M (2017) Medicago truncatula

893

ABCG10 is a transporter of 4-coumarate and liquiritigenin in the medicarpin

894

biosynthetic pathway. J Exp Bot 68: 3231–3241

895

Biała-Leonhard W, Zanin L, Gottardi S, de Brito Francisco R, Venuti S,

896

Valentinuzzi F, Mimmo T, Cesco S, Bassin B, Martinoia E, et al (2021)

897

Identification of an isoflavonoid transporter required for the nodule establishment

898

of the Rhizobium-Fabaceae symbiotic interaction. Front Plant Sci 12: 758213

899

Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA,

900

Gregory Caporaso J (2018) Optimizing taxonomic classification of marker-gene

901

amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:

902

90

903

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA,

904

Alexander H, Alm EJ, Arumugam M, Asnicar F, et al (2019) Author

905

Correction: Reproducible, interactive, scalable and extensible microbiome data

906

science using QIIME 2. Nat Biotechnol 37: 1091

907

Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N,

908

Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, et al (2012)

909

Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial

910

microbiota. Nature 488: 91–95

911

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016)

912

DADA2: High-resolution sample inference from Illumina amplicon data. Nat

913

Methods 13: 581–583

914

Cesco S, Neumann G, Tomasi N, Pinton R, Weisskopf L (2010) Release of plant-borne

915

flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 329: 1–

916

25

917

Chu S, Wang J, Zhu Y, Liu S, Zhou X, Zhang H, Wang C-E, Yang W, Tian Z, Cheng

918

H, et al (2017) An R2R3-type MYB transcription factor, GmMYB29, regulates

919

isoflavone biosynthesis in soybean. PLoS Genet 13: e1006770

920

Coronado C, Zuanazzi J, Sallaud C, Quirion JC, Esnault R, Husson HP, Kondorosi

921

A, Ratet P (1995) Alfalfa root flavonoid production is nitrogen regulated. Plant

922

Physiol 108: 533–542

923

Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu

924

Rev Environ Resour 30: 75–115

925

Estrella MJ, Pieckenstain FL, Marina M, Díaz LE, Ruiz OA (2004) Cheese whey: an

926

alternative growth and protective medium for Rhizobium loti cells. J Ind Microbiol

927

Biotechnol 31: 122–126

928

Frey M, Schullehner K, Dick R, Fiesselmann A, Gierl A (2009) Benzoxazinoid

929

biosynthesis, a model for evolution of secondary metabolic pathways in plants.

930

Phytochemistry 70: 1645–1651

931

932

Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci

11: 89–100

933

Hassan S, Mathesius U (2012) The role of flavonoids in root-rhizosphere signalling:

934

opportunities and challenges for improving plant-microbe interactions. J Exp Bot

935

63: 3429–3444

936

Hooper CM, Castleden IR, Tanz SK, Aryamanesh N, Millar AH (2017) SUBA4: the

937

interactive data analysis centre for Arabidopsis subcellular protein locations.

938

Nucleic Acids Res 45: D1064–D1074

939

Jacoby RP, Koprivova A, Kopriva S (2021) Pinpointing secondary metabolites that

940

shape the composition and function of the plant microbiome. J Exp Bot 72: 57–

941

69

942

Ketudat Cairns JR, Esen A (2010) β-Glucosidases. Cell Mol Life Sci 67: 3389–3405

943

Kong CH, Zhao H, Xu XH, Wang P, Gu Y (2007) Activity and allelopathy of soil of

944

flavone O-glycosides from rice. J Agric Food Chem 55: 6007–6012

945

Kosslak RM, Bookland R, Barkei J, Paaren HE, Appelbaum ER (1987) Induction of

946

Bradyrhizobium japonicum common nod genes by isoflavones isolated from

947

Glycine max. Proc Natl Acad Sci U S A 84: 7428–7432

948

Le Roy J, Huss B, Creach A, Hawkins S, Neutelings G (2016) Glycosylation is a major

949

regulator of phenylpropanoid availability and biological activity in plants. Front

950

Plant Sci 7: 735

951

952

953

954

Li X (2011) Extraction of root apoplastic wall fluid for apoplastic peroxidase activity

assay. Bio-protocol e127–e127

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550

955

Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129: 1–10

956

Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione S-transferase

957

involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:

958

397–400

959

Massalha H, Korenblum E, Tholl D, Aharoni A (2017) Small molecules below-

960

ground: the role of specialized metabolites in the rhizosphere. Plant J 90: 788–807

961

Matern U, Heller W, Himmelspach K (1983) Conformational changes of apigenin 7-

962

O-(6-O-malonylglucoside), a vacuolar pigment from parsley, with solvent

963

composition and proton concentration. Eur J Biochem 133: 439–448

964

Matsuda H, Nakayasu M, Aoki Y, Yamazaki S, Nagano AJ, Yazaki K, Sugiyama A

965

(2020) Diurnal metabolic regulation of isoflavones and soyasaponins in soybean

966

roots. Plant Direct 4: e00286

967

Morant AV, Jørgensen K, Jørgensen C, Paquette SM, Sánchez-Pérez R, Møller BL,

968

Bak S (2008) β-Glucosidases as detonators of plant chemical defense.

969

Phytochemistry 69: 1795–1813

970

Nakayasu M, Ohno K, Takamatsu K, Aoki Y, Yamazaki S, Takase H, Shoji T,

971

Yazaki K, Sugiyama A (2021) Tomato roots secrete tomatine to modulate the

972

bacterial assemblage of the rhizosphere. Plant Physiol 186: 270–284

973

974

Neal AL, Ahmad S, Gordon-Weeks R, Ton J (2012) Benzoxazinoids in root exudates

of maize attract Pseudomonas putida to the rhizosphere. PLoS One 7: e35498

975

Nezamivand-Chegini M, Metzger S, Moghadam A, Tahmasebi A, Koprivova A,

976

Eshghi S, Mohammadi-Dehchesmeh M, Kopriva S, Niazi A, Ebrahimie E

977

(2022) Nitrogen and phosphorus deficiencies alter primary and secondary

978

metabolites of soybean roots. bioRxiv 2022.03.14.484309

979

Nguyen HP, Miwa H, Obirih-Opareh J, Suzaki T, Yasuda M, Okazaki S (2020)

980

Novel rhizobia exhibit superior nodulation and biological nitrogen fixation even

981

under high nitrate concentrations. FEMS Microbiol Ecol 96: fiz184

982

Okutani F, Hamamoto S, Aoki Y, Nakayasu M, Nihei N, Nishimura T, Yazaki K,

983

Sugiyama A (2020) Rhizosphere modelling reveals spatiotemporal distribution

984

of daidzein shaping soybean rhizosphere bacterial community. Plant Cell Environ

985

43: 1036–1046

986

Pang Z, Chen J, Wang T, Gao C, Li Z, Guo L, Xu J, Cheng Y (2021) Linking plant

987

secondary metabolites and plant microbiomes: a review. Front Plant Sci 12:

988

621276

989

Pascale A, Proietti S, Pantelides IS, Stringlis IA (2019) Modulation of the root

990

microbiome by plant molecules: the basis for targeted disease suppression and

991

plant growth promotion. Front Plant Sci 10: 1741

992

Pueppke SG, Bolanos-Vasquez MC, Werner D, Bec-Ferte MP, Prome JC, Krishnan

993

HB (1998) Release of flavonoids by the soybean cultivars McCall and Peking and

994

their perception as signals by the nitrogen-fixing symbiont Sinorhizobium fredii.

995

Plant Physiol 117: 599–606

996

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner

997

FO (2013) The SILVA ribosomal RNA gene database project: improved data

998

processing and web-based tools. Nucleic Acids Res 41: D590-6

999

R Core Team (2021). R: A language and environment for statistical computing. R

1000

Foundation for Statistical Computing, Vienna, Austria. https://www.R-

1001

project.org/.

1002

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower

1003

C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:

1004

R60

1005

Smit G, Puvanesarajah V, Carlson RW, Barbour WM, Stacey G (1992)

1006

Bradyrhizobium japonicum nodD1 can be specifically induced by soybean

1007

flavonoids that do not induce the nodYABCSUIJ operon. J Biol Chem 267: 310–

1008

1009

1010

318

Strehmel N, Böttcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites

in root exudates of Arabidopsis thaliana. Phytochemistry 108: 35–46

1011

Stringlis IA, Yu K, Feussner K, de Jonge R, Van Bentum S, Van Verk MC,

1012

Berendsen RL, Bakker PAHM, Feussner I, Pieterse CMJ (2018) MYB72-

1013

dependent coumarin exudation shapes root microbiome assembly to promote

1014

plant health. Proc Natl Acad Sci U S A 115: E5213–E5222

1015

1016

Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during

legume nodulation. Trends Plant Sci 12: 282–285

1017

Sugawara M, Sadowsky MJ (2013) Influence of elevated atmospheric carbon dioxide

1018

on transcriptional responses of Bradyrhizobium japonicum in the soybean

1019

rhizoplane. Microbes Environ 28: 217–227

1020

1021

Sugiyama A (2021) Flavonoids and saponins in plant rhizospheres: roles, dynamics, and

the potential for agriculture. Biosci Biotechnol Biochem 85: 1919–1931

1022

Sugiyama A, Shitan N, Yazaki K (2007) Involvement of a soybean ATP-binding

1023

cassette-type transporter in the secretion of genistein, a signal flavonoid in

1024

legume-Rhizobium symbiosis. Plant Physiol 144: 2000–2008

1025

Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial

1026

community of soybean rhizospheres during growth in the field. PLoS One 9:

1027

e100709

1028

Sugiyama A, Yamazaki Y, Hamamoto S, Takase H, Yazaki K (2017) Synthesis and

1029

secretion of isoflavones by field-grown soybean. Plant Cell Physiol 58: 1594–

1030

1600

1031

Sugiyama A, Yamazaki Y, Yamashita K, Takahashi S, Nakayama T, Yazaki K

1032

(2016) Developmental and nutritional regulation of isoflavone secretion from

1033

soybean roots. Biosci Biotechnol Biochem 80: 89–94

1034

Sun Q, Lu H, Zhang Q, Wang D, Chen J, Xiao J, Ding X, Li Q (2021) Transcriptome

1035

sequencing of wild soybean revealed gene expression dynamics under low

1036

nitrogen stress. J Appl Genet 62: 389–404

1037

Suzuki H, Takahashi S, Watanabe R, Fukushima Y, Fujita N, Noguchi A, Yokoyama

1038

R, Nishitani K, Nishino T, Nakayama T (2006) An isoflavone conjugate-

1039

hydrolyzing β-glucosidase from the roots of soybean (Glycine max) seedlings:

1040

purification, gene cloning, phylogenetics, and cellular localization. J Biol Chem

1041

281: 30251–30259

1042

Tsuda M, Kaga A, Anai T, Shimizu T, Sayama T, Takagi K, Machita K, Watanabe

1043

S, Nishimura M, Yamada N, et al (2015) Construction of a high-density mutant

1044

library in soybean and development of a mutant retrieval method using amplicon

1045

sequencing. BMC Genomics 16: 1014

1046

1047

Tsuno Y, Fujimatsu T, Endo K, Sugiyama A, Yazaki K (2018) Soyasaponins: a new

class of root exudates in soybean (Glycine max). Plant Cell Physiol 59: 366–375

1048

Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root

1049

exudates: from plant to rhizosphere and beyond. Plant Cell Rep 39: 3–17

1050

Weir TL, Perry LG, Gilroy S, Vivanco JM (2010) The Role of root exudates in

1051

rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol.

1052

doi: 10.1146/annurev-plant-57-033010-200001

1053

Yazaki W, Shimasaki T, Aoki Y, Masuda S, Shibata A, Suda W, Shirasu K, Yazaki

1054

K, Sugiyama A (2021) Nitrogen deficiency-induced bacterial community shifts

1055

in soybean roots. Microbes Environ 36: ME21004

1056

Ye B, Saito A, Minamisawa K (2005) Effect of inoculation with anaerobic nitrogen-

1057

fixing consortium on salt tolerance of Miscanthus sinensis. Soil Sci Plant Nutr 51:

1058

243–249

1059

Yoo D, Hara T, Fujita N, Waki T, Noguchi A, Takahashi S, Nakayama T (2013)

1060

Transcription analyses of GmICHG, a gene coding for a β-glucosidase that

1061

catalyzes the specific hydrolysis of isoflavone conjugates in Glycine max (L.)

1062

Merr. Plant Sci 208: 10–19

1063

Yu P, He X, Baer M, Beirinckx S, Tian T, Moya YAT, Zhang X, Deichmann M, Frey

1064

FP, Bresgen V, et al (2021) Plant flavones enrich rhizosphere Oxalobacteraceae

1065

to improve maize performance under nitrogen deprivation. Nat Plants 7: 481–499

1066

Zamioudis C, Hanson J, Pieterse CMJ (2014) β-Glucosidase BGLU42 is a MYB72-

1067

dependent key regulator of rhizobacteria-induced systemic resistance and

1068

modulates iron deficiency responses in Arabidopsis roots. New Phytol 204: 368–

1069

379

1070

Zhao J, Dixon RA (2010) The “ins” and “outs” of flavonoid transport. Trends Plant Sci

1071

1072

15: 72–80

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る