リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Using HAADF-STEM for atomic-scale evaluation of incorporation of antibacterial Ag atoms in a ß-tricalcium phosphate structure」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Using HAADF-STEM for atomic-scale evaluation of incorporation of antibacterial Ag atoms in a ß-tricalcium phosphate structure

Gokcekaya, Ozkan 大阪大学

2020.07.29

概要

Structural evaluation of ionic additions in calcium phosphates that enhance their performance is a long-lasting area of research in the field of biomedical materials. Ionic incorporation in ß-tricalcium phosphate (ß-TCP) structures is indispensable for obtaining desirable properties for specific functions and applications. Owing to its complex structure and beam-sensitive nature, determining the extent of ion incorporation and its corresponding location in the ß-TCP structure is challenging. Further, very few experimental studies have been able to estimate the location of Ag atoms incorporated in a ß-TCP structure while considering the associated changes in lattice parameters. Although the incorporation alters the lattice parameters, the alteration is not significant enough for estimating the location of the incorporated Ag atoms. Here, Ag incorporation in a ß-TCP structure was evaluated on atomic scale using scanning transmission electron microscopy (STEM). To the best of our knowledge, this is the first report to unambiguously determine the location of the incorporated Ag atoms in the ß-TCP structure by comparing z-contrast profiles of the Ag and Ca atoms by combining the state-of-art STEM observations and STEM image simulations. The Ag incorporation in the Ca(4) sites of ß-TCP, as estimated by the Rietveld refinement, was in good agreement with the high-angle annular dark-field STEM observations and the simulations of the location of Ag atoms for [001] and [010] zone axes.

この論文で使われている画像

参考文献

1 L. L. Hench, J. Am. Ceram. Soc., 1991, 74, 1487–1510.

2 L. L. Hench, J. Am. Ceram. Soc., 1998, 81, 1705–1728.

3 O. Gokcekaya, K. Ueda, K. Ogasawara, H. Kanetaka and T. Narushima, Mater. Sci. Eng., C, 2017, 75, 926–933.

4 M. Frasnelli and V. M. Sglavo, Acta Biomater., 2016, 33, 283–289.

5 M. Šupová, Ceram. Int., 2015, 41, 9203–9231.

6 J. H. Shepherd, D. V. Shepherd and S. M. Best, J. Mater. Sci. Mater. Med., 2012, 23, 2335–2347. Paper Nanoscale

7 E. Boanini, M. Gazzano and A. Bigi, Acta Biomater., 2010, 6, 1882–1894.

8 J. C. Elliott, Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Elsevier Science, 2013.

9 R. Z. LeGeros, Clin. Mater., 1993, 14, 65–88.

10 M. Yashima, A. Sakai, T. Kamiyama and A. Hoshikawa, J. Solid State Chem., 2003, 175, 272–277.

11 M. Zhang, C. Wu, H. Li, J. Yuen, J. Chang and Y. Xiao, J. Mater. Chem., 2012, 22, 21686–21694.

12 X. Li, A. Ito, Y. Sogo, X. Wang and R. Z. LeGeros, Acta Biomater., 2009, 5, 508–517.

13 I. Mayer, F. J. G. Cuisinier, S. Gdalya and I. Popov, J. Inorg. Biochem., 2008, 102, 311–317.

14 K. Yoshida, H. Hyuga, N. Kondo, H. Kita, M. Sasaki, M. Mitamura, K. Hashimoto and Y. Toda, J. Am. Ceram. Soc., 2006, 89, 688–690.

15 E. Boanini, M. Gazzano, C. Nervi, M. R. Chierotti, K. Rubini, R. Gobetto and A. Bigi, J. Funct. Biomater., 2019, 10, 20.

16 A. Jacobs, M. Gaulier, A. Duval and G. Renaudin, Crystals, 2019, 9(7), 326.

17 S. Hoover, S. Tarafder, A. Bandyopadhyay and S. Bose, Mater. Sci. Eng., C, 2017, 79, 763–769.

18 P. N. Lim, L. Chang and E. S. Thian, Nanomedicine, 2015, 11, 1331–1344.

19 U. S. Hashimoto, K. Yoshida, Y. Toda and T. Kanazawa, Phosphorus Res. Bull., 2002, 13, 123–126.

20 N. Matsumoto, K. Sato, K. Yoshida, K. Hashimoto and Y. Toda, Acta Biomater., 2009, 5, 3157–3164.

21 S. Liu, C. Fan, F. Jin, L. Zhao, K. Dai and J. Lu, Int. J. Appl. Ceram. Technol., 2015, 12, 294–299.

22 C. Piccirillo, R. C. Pullar, D. M. Tobaldi, P. M. Lima Castro and M. M. Estevez Pintado, Ceram. Int., 2015, 41, 10152– 10159.

23 A. Ewald, D. Hösel, S. Patel, L. M. Grover, J. E. Barralet and U. Gbureck, Acta Biomater., 2011, 7, 4064–4070.

24 T. N. Kim, Q. L. Feng, J. O. Kim, J. Wu, H. Wang, G. C. Chen and F. Z. Cui, J. Mater. Sci. Mater. Med., 1998, 9, 129–134.

25 M. Raza, S. Zahid and A. Asif, in Woodhead Publishing Series in Biomaterials, ed. A. S. Khan and A. A. Chaudhry, Woodhead Publishing, 2020, pp. 21–51.

26 X. Wei and M. Akinc, J. Am. Ceram. Soc., 2007, 90, 2709– 2715.

27 M. Yashima and Y. Kawaike, Chem. Mater., 2007, 19, 3973–3979.

28 S. Gomes, J.-M. Nedelec, E. Jallot, D. Sheptyakov and G. Renaudin, Chem. Mater., 2011, 23, 3072–3085.

29 S. Gomes, J.-M. Nedelec, E. Jallot, D. Sheptyakov and G. Renaudin, Cryst. Growth Des., 2011, 11, 4017–4026.

30 S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer and J. M. F. Ferreira, J. Am. Ceram. Soc., 2008, 91, 1–12.

31 L. Obadia, P. Deniard, B. Alonso, T. Rouillon, S. Jobic, 31.J. Guicheux, M. Julien, D. Massiot, B. Bujoli and J.-M. Bouler, Chem. Mater., 2006, 18, 1425–1433.

32 F. Ren, Y. Leng, R. Xin and X. Ge, Acta Biomater., 2010, 6, 2787–2796.

33 K. Matsunaga, T. Kubota, K. Toyoura and A. Nakamura, Acta Biomater., 2015, 23, 329–337.

34 N. Rangavittal, A. R. Landa-Cánovas, J. M. González-Calbet and M. Vallet-Regí, J. Biomed. Mater. Res., 2000, 51, 660– 668.

35 T. J. Pennycook, G. T. Martinez, P. D. Nellist and J. C. Meyer, Ultramicroscopy, 2019, 196, 131–135.

36 J. P. Buban, Q. Ramasse, B. Gipson, N. D. Browning and H. Stahlberg, J. Electron Microsc., 2009, 59, 103–112.

37 K. Sohlberg, T. J. Pennycook, W. Zhou and S. J. Pennycook, Phys. Chem. Chem. Phys., 2015, 17, 3982–4006.

38 O. L. Krivanek, M. F. Chisholm, V. Nicolosi, T. J. Pennycook, G. J. Corbin, N. Dellby, M. F. Murfitt, C. S. Own, Z. S. Szilagyi, M. P. Oxley, S. T. Pantelides and S. J. Pennycook, Nature, 2010, 464, 571–574.

39 K. Gnanasekaran, G. de With and H. Friedrich, R. Soc. Open Sci., 2020, 5, 171838.

40 O. Gokcekaya, K. Ueda, T. Narushima and C. Ergun, Mater. Sci. Eng., C, 2015, 53, 111–119.

41 D. Arcos and M. Vallet-Regí, J. Mater. Chem. B, 2020, 8, 1781–1800.

42 O. Gokcekaya, T. J. Webster, K. Ueda, T. Narushima and C. Ergun, Mater. Sci. Eng., C, 2017, 77, 556–564.

43 M. Qadir, Y. Li and C. Wen, Acta Biomater., 2019, 89, 14–32.

44 J. Wu, K. Ueda and T. Narushima, Mater. Sci. Eng., C, 2020, 109, 110599.

45 N. Matsumoto, K. Yoshida, K. Hashimoto and Y. Toda, Mater. Res. Bull., 2009, 44, 1889–1894.

46 T. Hayashi, H. Muramatsu, D. Shimamoto, K. Fujisawa, T. Tojo, Y. Muramoto, T. Yokomae, T. Asaoka, Y. A. Kim, M. Terrones and M. Endo, Nanoscale, 2012, 4, 6419–6424.

47 B. H. Toby, Powder Diffr., 2006, 21, 67–70.

48 Z. L. Wang and J. M. Cowley, Ultramicroscopy, 1989, 31, 437–453.

49 P. N. Lim, L. Chang and E. S. Thian, Nat. Nanotechnol., 2009, 4, 781.

50 S. Kannan, F. Goetz-Neunhoeffer, J. Neubauer, S. Pina, P. M. C. Torres and J. M. F. Ferreira, Acta Biomater., 2010, 6, 571–576.

51 O. Gokcekaya, K. Ueda and T. Narushima, Ceram. Trans., 2015, 254, 13–20.

52 M. Sayahi, J. Santos, H. El-Feki, C. Charvillat, F. Bosc, I. Karacan, B. Milthorpe and C. Drouet, Mater. Today Chem., 2020, 16, 100230.

53 M. Meledina, S. Turner, V. V. Galvita, H. Poelman, G. B. Marin and G. Van Tendeloo, Nanoscale, 2015, 7, 3196–3204.

54 C. T. Koch, Ph.D. Thesis, 2002.

参考文献をもっと見る