リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of Temperature on Crystal Structure of W Films Electrodeposited from Molten CsF-CsCl-WO₃」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of Temperature on Crystal Structure of W Films Electrodeposited from Molten CsF-CsCl-WO₃

Norikawa, Yutaro Meng, Xianduo Yasuda, Kouji Nohira, Toshiyuki 京都大学 DOI:10.1149/1945-7111/ac9760

2022.10

概要

The electrodeposition of W was studied in detail using CsF–CsCl–WO₃. Prior to electrodeposition, the WO₃ solubility was confirmed to be 1.0 mol% at 773 K and increase with temperature. To investigate the effect of temperature on the crystal structure, electrodeposition was conducted at 6–25 mA cm⁻² between 773 and 923 K with a unified charge density of 90 C cm⁻². X-ray diffraction analysis confirmed that the crystal structures of the electrodeposited W films were β-W at 773 and 823 K, a mixed phase (α-W and β-W) at 873 K, and α-W at 923 K. The shape of the crystal grains varied with temperature: grains of β-W obtained at 773 and 823 K were spherical, while those of α-W obtained at 923 K were angular. Scanning electron microscopy observations showed that W films with smoother surfaces were obtained at lower current densities at all temperatures. In particular, a dense and smooth W film (surface roughness: 0.66 μm, thickness: 10 μm) was obtained at 6 mA cm⁻² and 773 K. When the charge density was increased to 210 C cm⁻² at 6 mA cm⁻² and 773 K, a W film with a smooth surface and thickness of 30 μm was obtained.

この論文で使われている画像

参考文献

1. M. Rieth et al., J. Nucl. Mater., 432, 482 (2013).

2. Y. Liu, Y. Zhang, F. Jiang, B. Fu, and N. Sun, J. Nucl. Mater., 442, S585 (2013).

3. N. Sun, Y. Zhang, F. Jiang, S. Lang, and M. Xia, Fusion Eng. Des., 89, 2529 (2014).

4. F. Jiang, Y. Zhang, N. Sun, W. Cheng, and X. Ding, J. Nucl. Mater., 455, 416 (2014).

5. F. Jiang, Y. Zhang, N. Sun, and Z. Liu, Appl. Surf. Sci., 317, 867 (2014).

6. F. Jiang, Y. Zhang, N. Sun, and J. Leng, Appl. Surf. Sci., 327, 432 (2015).

7. F. Jiang, Y. Zhang, N. Sun, and J. Leng, Appl. Surf. Sci., 331, 278 (2015).

8. Y. H. Liu, Y. C. Zhang, Q. Z. Liu, X. L. Li, and F. Jiang, Fusion Eng. Des., 87, 1861 (2012).

9. A. Katagiri, M. Suzuki, and Z. Takehara, J. Electrochem. Soc., 138, 767 (1991).

10. H. Takenishi and A. Katagiri, Electrochemistry, 67, 669 (1999).

11. M. Masuda, H. Takenishi, and A. Katagiri, J. Electrochem. Soc., 148, C59 (2001).

12. H. Nakajima, T. Nohira, and R. Hagiwara, Electrochem. Solid-State Lett., 8, C91 (2005).

13. S. Senderoff and G. W. Mellors, Science, 153, 1475 (1966).

14. S. Senderoff and G. W. Mellors, J. Electrochem. Soc., 114, 586 (1967).

15. V. A. Pavlovskii, Prot. Met., 42, 170 (2006).

16. H. Nakajima, T. Nohira, R. Hagiwara, K. Nitta, S. Inazawa, and K. Okada, Electrochim. Acta, 53, 24 (2007).

17. K. Nitta, M. Majima, S. Inazawa, T. Nohira, and R. Hagiwara, Electrochemistry, 77, 621 (2009).

18. K. Nitta, T. Nohira, R. Hagiwara, M. Majima, and S. Inazawa, Electrochim. Acta, 55, 1278 (2010).

19. T. Nohira, K. Kitagawa, R. Hagiwara, K. Nitta, M. Majima, and S. Inazawa, Trans. Mater. Res. Soc. Jpn, 35, 35 (2010).

20. T. Nohira, T. Ide, X. Meng, Y. Norikawa, and K. Yasuda, J. Electrochem. Soc., 168, 046505 (2021).

21. X. Meng, Y. Norikawa, and T. Nohira, Electrochem. Commun., 132, 107139 (2021).

22. A. N. Vtyurin, J. V. Gerasimova, A. S. Krylov, A. A. Ivanenko, N. P. Shestakov, N. M. Laptash, and E. I. Voyt, J. Raman Spectrosc., 41, 1784 (2010).

23. H. Fischer, Elektrolytische Abscheidung und Elektrokristallisation von Metallen (Springer, Berlin) p. 471 (1954).

24. R. Winand, Electrochim. Acta, 39, 1091 (1994).

25. V. H. Hartmann, F. Ebert, and O. Bretschneider, Z. Anorg. Allg. Chem., 198, 116 (1931), [in German].

26. Y. G. Shen and Y. W. Mai, Mater. Sci. Eng., 28, 176 (2000).

27. A. Chattaraj et al., Sci Rep., 10, 14718 (2020).

28. M. H. F. Sluiter, Phys. Rev. B, 80, 220102 (2009).

29. P. Petroff, T. T. Sheng, A. K. Sinha, G. A. Rozgonyi, and F. B. Alexander, J. Appl. Phys., 44, 6 (1973).

30. P. Petroff and W. A. Reed, Thin Solid Films, 21, 73 (1974).

31. M. J. O’Keefe and C. L. Cerny, Mat. Res. Soc. Symp. Proc., 387, 377 (1995).

32. P. C. Jiang, J. S. Chen, K. H. Cheng, T. J. Hu, K. B. Huang, and F. S. Lee, Mater. Res. Soc. Symp. Proc., 917, 1201 (2006).

33. H. L. Sun, Z. X. Song, D. G. Guo, F. Ma, and K. W. Xu, J. Mater. Sci. Technol., 26, 87 (2010).

34. Q. Hao, W. Chen, and G. Xiao, Appl. Phys. Lett., 106, 182403 (2015).

35. C. F. Pai, L. Liu, Y. Li, H. W. Tseng, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett., 101, 122404 (2012).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る