リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「報酬および疼痛制御を担う神経機構に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

報酬および疼痛制御を担う神経機構に関する研究

河合, 洋幸 京都大学 DOI:10.14989/doctor.k23846

2022.03.23

概要

報酬により生起される快情動や、痛みなどの罰刺激により生起される不快情動は、個体の生存に必須の要素である。一方、それらの過剰な生起は薬物依存症やうつ病、慢性疼痛など様々な疾患においても観察されることから、その詳細な神経機構の解明は、疾患の生物学的理解に基づく創薬の観点から重要である。本研究の第一章では、高い有効性を持つもののその作用機構に未解明の部分が多い鎮痛薬ノイロトロピンの後根神経節に対する作用を検討した。一方、中枢神経系においてはセロトニン神経が快/不快情動の双方に関与することが薬理学的検討から示唆されているものの、多数存在するセロトニン神経核それぞれの役割については未だ明らかになっていない。そこで第二章では、セロトニン神経核の一つである正中縫線核のセロトニン神経に着目し、選択的な活動計測および活動への介入を用いた解析を行った。

第一章 初代培養後根神経節神経の電気生理学的特性に対するノイロトロピンの作用解析
 ワクシニアウイルスを接種した家兎の炎症皮膚抽出液含有製剤であるノイロトロピン(NTP)は、神経障害性疼痛に対する鎮痛薬として臨床使用されている。作用の一つとしてセロトニン神経をはじめとする下行性疼痛抑制系の賦活化が知られているが、下行性疼痛抑制系を障害した中枢性神経障害性疼痛モデルにも有効であるなど、その多様な薬理作用の全容は未解明である。神経障害性疼痛は末梢神経である後根神経節(DRG)神経の過活動がその一因であることから、NTPのDRG神経に対する活動調節作用について検討した。ラットから単離した初代培養DRG神経において、NTPの3日間の持続処置は電流注入により誘発される神経発火を抑制した。また、発火閾値についてもNTP持続処置により上昇していた。これらの現象の背景にある分子機構について、K+チャネル機能調節作用に着目して検討した。その結果、NTPは電位依存性カリウム(Kv)チャネル電流の持続性成分を選択的に増強させることを見出した。DRG神経に発現するK+チャネルの機能低下は神経障害性疼痛の原因となることから、NTPによる持続性Kvチャネル電流増強がその鎮痛効果の背景にあることが示唆される。

第二章 正中縫線核セロトニン神経の報酬/罰刺激情報処理における役割の解明
 セロトニン神経核の一つである正中縫線核は、報酬情報処理過程における重要性が示唆されているものの細胞種特異的な検討が難しく、報酬や罰刺激に対するセロトニン神経の応答やその生理的役割については未だ明らかになっていない。そこで本章では、光照射により細胞種特異的な活動計測/調節を可能にする光遺伝学的手法を用いて、正中縫線核セロトニン神経の報酬/罰刺激情報処理における役割について検討した。セロトニン合成酵素であるTph2遺伝子プロモーターを用いることで、マウス正中縫線核セロトニン神経特異的に蛍光Ca2+プローブであるGCaMP遺伝子を発現させた。脳内に留置した光ファイバーを介して励起光を照射し、神経活動に伴う細胞内Ca2+変動をGCaMP蛍光として検出することで細胞種選択的な活動測定を可能とした。このファイバーフォトメトリー法を用いて、報酬刺激として作用するスクロース水と罰刺激として作用するテールピンチ刺激を与えた際の神経応答を記録した。その結果、スクロース水摂取により正中縫線核セロトニン神経活動の低下が、テールピンチ刺激によりその亢進がそれぞれ生じることが明らかになった。さらに、青色光により神経活動を亢進させ得るCheRiff、および緑色光により神経活動を抑制し得るeArchTを用いて上記の活動変動を光遺伝学的手法により模倣した。その結果、正中縫線核セロトニン神経活動の抑制は条件付け場所嗜好性試験において報酬様の作用を、活動の亢進は条件付け場所嫌悪性試験において罰刺激様の作用をそれぞれ有することを見出した。さらに投射先選択的な活動計測および活動介入を行った結果、脚間核に投射する正中縫線核セロトニン神経が上記の報酬/罰刺激情報処理作用を担うことを見出した。加えて、上記作用を媒介するセロトニン受容体サブタイプについて薬理学的手法で検討した結果、脚間核5-HT2A受容体の活性化が罰刺激様の作用の発現に必要であることを明らかにした。これらの結果は脚間核に投射する正中縫線核セロトニン神経が脚間核5-HT2A受容体を介して報酬/罰刺激情報処理の中核を担っていることを示唆している。

 以上、著者は電気生理学的手法により、神経障害性疼痛治療薬ノイロトロピンの新規作用機序として、持続性Kvチャネル電流増強を介したDRG神経活動の抑制作用を見出した。また光遺伝学的解析により、正中縫線核セロトニン神経の脚間核5-HT2A受容体を介した報酬/罰情報処理機構を見出した。上記の知見は、神経障害性疼痛や依存症、うつ病の病態解明および新薬の創出に資する基礎的知見となるものである。

参考文献

1. Cohen, S. P. & Mao, J. Neuropathic pain: mechanisms and their clinical implications. BMJ 348, f7656 (2014).

2. Wiffen, P. J. et al. Paracetamol (acetaminophen) with or without codeine or dihydrocodeine for neuropathic pain in adults. Cochrane Database Syst. Rev. 12, CD012227 (2016).

3. Moore, R. A., Chi, C. C., Wiffen, P. J., Derry, S. & Rice, A. S. C. Oral nonsteroidal anti- inflammatory drugs for neuropathic pain. Cochrane Database Syst. Rev. 10, CD010902 (2015).

4. Sindrup, S. H., Otto, M., Finnerup, N. B. & Jensen, T. S. Antidepressants in the treatment of neuropathic pain. Basic Clin. Pharmacol. Toxicol. 96, 399–409 (2005).

5. Finnerup, N. B., Sindrup, S. H. & Jensen, T. S. The evidence for pharmacological treatment of neuropathic pain. Pain 150, 573–581 (2010).

6. Micó, J. A., Ardid, D., Berrocoso, E. & Eschalier, A. Antidepressants and pain. Trends Pharmacol. Sci. 27, 348–354 (2006).

7. Boyle, J. et al. Randomized, placebo-controlled comparison of amitriptyline, duloxetine, and pregabalin in patients with chronic diabetic peripheral neuropathic pain: impact on pain, polysomnographic sleep, daytime functioning, and quality of life. Diabetes Care 35, 2451–2458 (2012).

8. Shneker, B. F. & McAuley, J. W. Pregabalin: a new neuromodulator with broad therapeutic indications. Ann. Pharmacother. 39, 2029–2037 (2005).

9. Finnerup, N. B., Otto, M., McQuay, H. J., Jensen, T. S. & Sindrup, S. H. Algorithm for neuropathic pain treatment: an evidence based proposal. Pain 118, 289–305 (2005).

10. Okai, H., Furue, H. & Yoshimura, M. Electrophysiological evidence for the involvement of facilitation of descending pain inhibitory system in the antinociceptive action of neurotropin. Pain Res. 23, 11–18 (2008).

11. Isonaka, R., Takenami, T., Katakura, T. & Kawakami, T. Neurotropin inhibits axonal transport in cultured mouse dorsal root ganglion neurons. Neurosci. Lett. 543, 101–104 (2013).

12. Taneda, K., Tominaga, M., Tengara, S., Ogawa, H. & Takamori, K. Neurotropin inhibits both capsaicin-induced substance P release and nerve growth factor-induced neurite outgrowth in cultured rat dorsal root ganglion neurones. Clin. Exp. Dermatol. 35, 73–77 (2010).

13. Chung, J. M. & Chung, K. Importance of hyperexcitability of DRG neurons in neuropathic pain. Pain Pract. 2, 87–97 (2002).

14. Wang, J. G., Strong, J. A., Xie, W. & Zhang, J. M. Local inflammation in rat dorsal root ganglion alters excitability and ion currents in small-diameter sensory neurons. Anesthesiology 107, 322–332 (2007).

15. Catacuzzeno, L., Fioretti, B., Pietrobon, D. & Franciolini, F. The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurones. J. Physiol. 586, 5101–5118 (2008).

16. Wang, X. C. et al. α-Dendrotoxin-sensitive Kv1 channels contribute to conduction failure of polymodal nociceptive C-fibers from rat coccygeal nerve. J. Neurophysiol. 115, 947– 957 (2016).

17. Yang, E. K., Takimoto, K., Hayashi, Y., De Groat, W. C. & Yoshimura, N. Altered expression of potassium channel subunit mRNA and α-dendrotoxin sensitivity of potassium currents in rat dorsal root ganglion neurons after axotomy. Neuroscience 123, 867–874 (2004).

18. Fan, L. et al. Impaired neuropathic pain and preserved acute pain in rats overexpressing voltage-gated potassium channel subunit Kv1.2 in primary afferent neurons. Mol. Pain 10, 8 (2014).

19. Blackburn-Munro, G. & Jensen, B. S. The anticonvulsant retigabine attenuates nociceptive behaviours in rat models of persistent and neuropathic pain. Eur. J. Pharmacol. 460, 109–116 (2003).

20. Roza, C. & Lopez-Garcia, J. A. Retigabine, the specific KCNQ channel opener, blocks ectopic discharges in axotomized sensory fibres. Pain 138, 537–545 (2008).

21. Imai, S. et al. Taxanes and platinum derivatives impair schwann cells via distinct mechanisms. Sci. Rep. 7, 5947 (2017).

22. Sun, W. et al. Reduced conduction failure of the main axon of polymodal nociceptive c- fibres contributes to painful diabetic neuropathy in rats. Brain 135, 359–375 (2012).

23. Ritter, D. M. et al. Dysregulation of Kv3.4 channels in dorsal root ganglia following spinal cord injury. J. Neurosci. 35, 1260–1273 (2015).

24. Pongs, O. Voltage-gated potassium channels: from hyperexcitability to excitement. FEBS Lett. 452, 31–35 (1999).

25. Everill, B., Rizzo, M. A. & Kocsis, J. D. Morphologically identified cutaneous afferent DRG neurons express three different potassium currents in varying proportions. J. Neurophysiol. 79, 1814–1824 (1998).

26. Matsumoto, S., Yoshida, S., Takahashi, M., Saiki, C. & Takeda, M. The roles of ID, IA and IK in the electrophysiological functions of small-diameter rat trigeminal ganglion neurons. Curr. Mol. Pharmacol. 3, 30–36 (2012).

27. Mathie, A., Wooltorton, J. R. A. & Watkins, C. S. Voltage-activated potassium channels in mammalian neurons and their block by novel pharmacological agents. Gen. Pharmacol. 30, 13–24 (1998).

28. Murakoshi, H. & Trimmer, J. S. Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J. Neurosci. 19, 1728–1735 (1999).

29. Rasband, M. N. et al. Distinct potassium channels on pain-sensing neurons. Proc. Natl Acad. Sci. USA 98, 13373–13378 (2001).

30. Malin, S. A. & Nerbonne, J. M. Delayed rectifier K+ currents, IK, are encoded by Kv2 α- subunits and regulate tonic firing in mammalian sympathetic neurons. J. Neurosci. 22, 10094–10105 (2002).

31. Winkelman, D. L. B., Beck, C. L., Ypey, D. L. & O'Leary, M. E. Inhibition of the A- type K+ channels of dorsal root ganglion neurons by the long-duration anesthetic butamben. J. Pharmacol. Exp. Ther. 314, 1177–1186 (2005).

32. Zhao, X. et al. A long noncoding RNA contributes to neuropathic pain by silencing Kcna2 in primary afferent neurons. Nat. Neurosci. 16, 1024–1031 (2013).

33. Hu, H. J. et al. The Kv4.2 potassium channel subunit is required for pain plasticity. Neuron 50, 89–100 (2006).

34. Vydyanathan, A., Wu, Z. Z., Chen, S. R. & Pan, H. L. A-type voltage-gated K+ currents influence firing properties of isolectin B4-positive but not isolectin B4-negative primary sensory neurons. J. Neurophysiol. 93, 3401–3409 (2005).

35. Tsantoulas, C. et al. Kv2 dysfunction after peripheral axotomy enhances sensory neuron responsiveness to sustained input. Exp. Neurol. 251, 115–126 (2014).

36. Takeda, M. et al. Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain. Mol. Pain 7, 5 (2011).

37. Hao, J. et al. Kv1.1 channels act as mechanical brake in the senses of touch and pain. Neuron 77, 899–914 (2013).

38. Kirchhoff, C., Leah, J. D., Jung, S. & Reeh, P. W. Excitation of cutaneous sensory. Nerve endings in the rat by 4-aminopyridine and tetraethylammonium. J. Neurophysiol. 67, 125–131 (1992).

39. Tsantoulas, C. et al. Sensory neuron downregulation of the Kv9.1 potassium channel subunit mediates neuropathic pain following nerve injury. J. Neurosci. 32, 17502–17513 (2012).

40. Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952).

41. Blaine, J. T., Taylor, A. D. & Ribera, A. B. Carboxyl tail region of the Kv2.2 subunit mediates novel developmental regulation of channel density. J. Neurophysiol. 92, 3446– 3454 (2004).

42. Johnston, J., Forsythe, I. D. & Kopp-Scheinpflug, C. Going native: voltage-gated potassium channels controlling neuronal excitability. J. Physiol. 588, 3187–3200 (2010).

43. Hata, T., Kita, T., Itoh, E. & Oyama, R. Mechanism of the analgesic effect of neurotropin an extract from the inflamed skin of vaccinia virus inoculated rabbits , has been observed clinically to be effective for treating pain in patients with lumbago , SMON and other neuropathies . Jpn. J. Pharmacol. 48, 165–173 (1988).

44. Kawamura, M., Ohara, H., Go, K., Koga, Y. & Ienaga, K. Neurotropin induces antinociceptive effect by enhancing descending pain inhibitory systems involving 5-HT3 and noradrenergic α2 receptors in spinal dorsal horn. Life Sci. 62, 2181–2190 (1998).

45. Kudo, T., Kushikata, T., Kudo, M., Kudo, T. & Hirota, K. Antinociceptive effects of neurotropin in a rat model of central neuropathic pain: DSP-4 induced noradrenergic lesion. Neurosci. Lett. 503, 20–22 (2011).

46. Fukuda, Y. et al. Neurotropin promotes NGF signaling through interaction of GM1 ganglioside with Trk neurotrophin receptor in PC12 cells. Brain Res. 1596, 13–21 (2015).

47. Sharma, N., D'Arcangelo, G., Kleinklaus, A., Halegoua, S. & Trimmer, J. S. Nerve growth factor regulates the abundance and distribution of K+ channels in PC12 cells. J. Cell Biol. 123, 1835–1843 (1993).

48. Cerda, O. & Trimmer, J. S. Analysis and functional implications of phosphorylation of neuronal voltage-gated potassium channels. Neurosci. Lett. 486, 60–67 (2010).

49. Redman, P. T. et al. Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. Proc. Natl Acad. Sci. USA 104, 3568–3573 (2007).

50. Okai, H., Okazaki, R., Kawamura, M., Yoshimura, M. Excitatory effect of Neurotropin® on noradrenergic neurons in rat locus coeruleus. Life Sci. 136, 79–86 (2015).

51. Nieh, E. H. et al. Inhibitory input from the lateral hypothalamus to the ventral tegmental area disinhibits dopamine neurons and promotes behavioral activation. Neuron 90, 1286– 1298 (2016).

52. Xiao, C. et al. Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron 90, 333–347 (2016).

53. Li, Y. et al. Rostral and caudal ventral tegmental area GABAergic inputs to different dorsal raphe neurons participate in opioid dependence. Neuron 101, 748–761.e5 (2019).

54. Tan, K. R. et al. GABA neurons of the VTA drive conditioned place aversion. Neuron 73, 1173–1183 (2012).

55. LeGates, T. A. et al. Reward behaviour is regulated by the strength of hippocampus– nucleus accumbens synapses. Nature 564, 258–262 (2018).

56. Golden, S. A. et al. Basal forebrain projections to the lateral habenula modulate aggression reward. Nature 534, 688–692 (2016).

57. Kim, J. et al. Rapid, biphasic CRF neuronal responses encode positive and negative valence. Nat. Neurosci. 22, 576–585 (2019).

58. Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

59. Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).

60. Hayashi, K., Nakao, K. & Nakamura, K. Appetitive and aversive information coding in the primate dorsal raphé nucleus. J. Neurosci. 35, 6195–6208 (2015).

61. Volkow, N. D. & Morales, M. The brain on drugs: from reward to addiction. Cell 162, 712–725 (2015).

62. Hu, H. Reward and aversion. Annu. Rev. Neurosci. 39, 297–324 (2016).

63. Kranz, G. S., Kasper, S. & Lanzenberger, R. Reward and the serotonergic system. Neuroscience 166, 1023–1035 (2010).

64. Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and glutamate. Neuron 81, 1360–1374 (2014).

65. Nagai, Y. et al. The role of dorsal raphe serotonin neurons in the balance between reward and aversion. Int. J. Mol. Sci. 21, 2160 (2020).

66. Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).

67. Zhong, W., Li, Y., Feng, Q. & Luo, M. Learning and stress shape the reward response patterns of serotonin neurons. J. Neurosci. 37, 8863–8875 (2017).

68. Inaba, K. et al. Neurons in monkey dorsal raphe nucleus code beginning and progress of step-by-step schedule, reward expectation, and amount of reward outcome in the reward schedule task. J. Neurosci. 33, 3477–3491 (2013).

69. Cohen, J. Y., Amoroso, M. W. & Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife 4, e06346 (2015).

70. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–5343 (2008).

71. Bromberg-Martin, E. S., Hikosaka, O. & Nakamura, K. Coding of task reward value in the dorsal raphe nucleus. J. Neurosci. 30, 6262–6272 (2010).

72. Bosker, F. J., Klompmakers, A. A. & Westenberg, H. G. M. Effects of single and repeated oral administration of fluvoxamine on extracellular serotonin in the median raphe nucleus and dorsal hippocampus of the rat. Neuropharmacology 34, 501–508 (1995).

73. Romero, L., Bel, N., Artigas, F., de Montigny, C. & Blier, P. Effect of pindolol on the function of pre- and postsynaptic 5-HT1A receptors: in vivo microdialysis and electrophysiological studies in the rat brain. Neuropsychopharmacology 15, 349–360 (1996).

74. McQuade, R. & Sharp, T. Functional mapping of dorsal and median raphe 5- hydroxytryptamine pathways in forebrain of the rat using microdialysis. J. Neurochem. 69, 791–796 (1997).

75. Risinger, F. O. Fluoxetine's effects on ethanol's rewarding, aversive and stimulus properties. Life Sci. 61, PL 235–242 (1997).

76. Subhan, F., Deslandes, P. N., Pache, D. M. & Sewell, R. D. E. Do antidepressants affect motivation in conditioned place preference? Eur. J. Pharmacol. 408, 257–263 (2000).

77. Hiranita, T., Soto, P. L., Newman, A. H. & Katz, J. L. Assessment of reinforcing effects of benztropine analogs and their effects on cocaine self-administration in rats: comparisons with monoamine uptake inhibitors. J. Pharmacol. Exp. Ther. 329, 677–686 (2009).

78. Nutt, D. et al. The other face of depression, reduced positive affect: the role of catecholamines in causation and cure. J. Psychopharmacol. 21, 461–471 (2007).

79. Fletcher, P. J., Ming, Z. H. & Higgins, G. A. Conditioned place preference induced by microinjection of 8-OH-DPAT into the dorsal or median raphe nucleus. Psychopharmacology (Berl). 113, 31–36 (1993).

80. Dzung Lê, A. et al. Intra-median raphe nucleus (MRN) infusions of muscimol, a GABA- A receptor agonist, reinstate alcohol seeking in rats: role of impulsivity and reward. Psychopharmacology (Berl). 195, 605–615 (2008).

81. Graeff, F. G. & Silveira Filho, N. G. Behavioral inhibition induced by electrical stimulation of the median raphe nucleus of the rat. Physiol. Behav. 21, 477–484 (1978).

82. Szőnyi, A. et al. Median raphe controls acquisition of negative experience in the mouse. Science 366, eaay8746 (2019).

83. Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates 3rd edn (Academic Press, 2007).

84. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

85. Hochbaum, D. R. et al. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 11, 825–833 (2014).

86. Mattis, J. et al. Principles for applying optogenetic tools derived from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2012).

87. Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

88. Broussard, G. J. et al. In vivo measurement of afferent activity with axon-specific calcium imaging. Nat. Neurosci. 21, 1272–1280 (2018).

89. Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).

90. Yang, H. et al. Nucleus accumbens subnuclei regulate motivated behavior via direct inhibition and disinhibition of VTA dopamine subpopulations. Neuron 97, 434–449.e4 (2018).

91. Yang, H. et al. Pain modulates dopamine neurons via a spinal–parabrachial– mesencephalic circuit. Nat. Neurosci. 24, 1402–1413(2021).

92. Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

93. Kim, C. K. et al. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13, 325–328 (2016).

94. Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J. Biol. Methods 1, e10 (2014).

95. Zhang, T. et al. Activation of GABAergic neurons in the nucleus accumbens mediates the expression of cocaine-associated memory. Biol. Pharm. Bull. 41, 1084–1088 (2018).

96. Zhang, T. et al. Glutamatergic neurons in the medial prefrontal cortex mediate the formation and retrieval of cocaine-associated memories in mice. Addict. Biol. 25, e12723 (2020).

97. Tzschentke, T. M. Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 56, 613–672 (1998).

98. Fletcher, P. J., Grottick, A. J. & Higgins, G. A. Differential effects of the 5-HT2A receptor antagonist M100,907 and the 5-HT2C receptor antagonist SB242,084 on cocaine-induced locomotor activity, cocaine self-administration and cocaine-induced reinstatement of responding. Neuropsychopharmacology 27, 576–586 (2002).

99. Boutrel, B., Monaca, C., Hen, R., Hamon, M. & Adrien, J. Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J. Neurosci. 22, 4686–4692 (2002).

100. Smith, R. L., Barrett, R. J. & Sanders-Bush, E. Discriminative stimulus properties of 1- (2,5-dimethoxy-4-iodophenyl)-2-aminopropane [(±)DOI] in C57BL/6J mice. Psychopharmacology (Berl). 166, 61–68 (2003).

101. Zhao-Shea, R., Liu, L., Pang, X., Gardner, P. D. & Tapper, A. R. Activation of GABAergic neurons in the interpeduncular nucleus triggers physical nicotine withdrawal symptoms. Curr. Biol. 23, 2327–2335 (2013).

102. Taylor, S. R. et al. GABAergic and glutamatergic efferents of the mouse ventral tegmental area. J. Comp. Neurol. 522, 3308–3334 (2014).

103. Nunes-de-Souza, R. L., Canto-de-Souza, A. & Rodgers, R. J. Effects of intra- hippocampal infusion of WAY-100635 on plus-maze behavior in mice: influence of site of injection and prior test experience. Brain Res. 927, 87–96 (2002).

104. Canto-de-Souza, A., Nunes-de-Souza, R. L. & Rodgers, R. J. Anxiolytic-like effect of way-100635 microinfusions into the median (but not dorsal) raphe nucleus in mice exposed to the plus-maze: influence of prior test experience. Brain Res. 928, 50–59 (2002).

105. Nair, S. G. et al. Role of dorsal medial prefrontal cortex dopamine D1-family receptors in relapse to high-fat food seeking induced by the anxiogenic drug yohimbine. Neuropsychopharmacology 36, 497–510 (2011).

106. Nishitani, N. et al. Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescapable stress and anxiety-related behaviors in mice and rats. Neuropsychopharmacology 44, 721–732 (2019).

107. Ables, J. L. et al. Retrograde inhibition by a specific subset of interpeduncular α5 nicotinic neurons regulates nicotine preference. Proc. Natl Acad. Sci. USA 114, 13012– 13017 (2017).

108. Wolfman, S. L. et al. Nicotine aversion is mediated by GABAergic interpeduncular nucleus inputs to laterodorsal tegmentum. Nat. Commun. 9, 2710 (2018).

109. Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M. & Gaspar, P. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain and brainstem. Brain Struct. Funct. 221, 535–561 (2016).

110. Fowler, C. D., Lu, Q., Johnson, P. M., Marks, M. J. & Kenny, P. J. Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471, 597–601 (2011).

111. Glick, S. D., Ramirez, R. L., Livi, J. M. & Maisonneuve, I. M. 18-Methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self- administration in rats. Eur. J. Pharmacol. 537, 94–98 (2006).

112. Boulos, L. J. et al. Mu opioid receptors in the medial habenula contribute to naloxone aversion. Neuropsychopharmacology 45, 247–255 (2020).

113. Pentkowski, N. S., Blanchard, D. C., Lever, C., Litvin, Y. & Blanchard, R. J. Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur. J. Neurosci. 23, 2185–2196 (2006).

114. Schumacher, A., Vlassov, E. & Ito, R. The ventral hippocampus, but not the dorsal hippocampus is critical for learned approach-avoidance decision making. Hippocampus 26, 530–542 (2016).

115. Sengupta, A. & Holmes, A. A discrete dorsal raphe to basal amygdala 5-HT circuit calibrates aversive memory. Neuron 103, 489–505.e7 (2019).

116. Hagsäter, S. M. et al. A complex impact of systemically administered 5-HT2A receptor ligands on conditioned fear. Int. J. Neuropsychopharmacol. 24, 749–757 (2021).

117. Macedo, C. E., Martinez, R. C. R., Albrechet-Souza, L., Molina, V. A. & Brandão, M. L. 5-HT2- and D1-mechanisms of the basolateral nucleus of the amygdala enhance conditioned fear and impair unconditioned fear. Behav. Brain Res. 177, 100–108 (2007).

118. Olivier, B. Serotonin: a never-ending story. Eur. J. Pharmacol. 753, 2–18 (2015).

119. Fernandez, S. P. et al. Constitutive and acquired serotonin deficiency alters memory and hippocampal synaptic plasticity. Neuropsychopharmacology 42, 512–523 (2017).

120. Zaniewska, M., McCreary, A. C., Wydra, K. & Filip, M. Effects of serotonin (5-HT)2 receptor ligands on depression-like behavior during nicotine withdrawal. Neuropharmacology 58, 1140–1146 (2010).

121. Malin, D. et al. Inverse agonists of the 5-HT2A receptor reduce nicotine withdrawal signs in rats. Neurosci. Lett. 713, 134524 (2019).

122. Lima, L. B. et al. Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the habenula and raphe nuclei. J. Comp. Neurol. 525, 2411–2442 (2017).

123. de Jong, J. W. et al. A neural circuit mechanism for encoding aversive stimuli in the mesolimbic dopamine system. Neuron 101, 133–151.e7 (2019).

124. Wang, H. L. et al. Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons. Cell Rep. 26, 1128–1142.e7 (2019).

125. Okaty, B. W. et al. Multi-scale molecular deconstruction of the serotonin neuron system. Neuron 88, 774–791 (2015).

126. Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe nuclei. eLife 8, e49424 (2019).

127. Ohmura, Y. et al. The serotonergic projection from the median raphe nucleus to the ventral hippocampus is involved in the retrieval of fear memory through the corticotropin-releasing factor type 2 receptor. Neuropsychopharmacology 35, 1271–1278 (2010).

128. Ohmura, Y. et al. Different roles of distinct serotonergic pathways in anxiety-like behavior, antidepressant-like, and anti-impulsive effects. Neuropharmacology 167, 107703 (2020).

129. Yoshida, K., Drew, M. R., Mimura, M. & Tanaka, K. F. Serotonin-mediated inhibition of ventral hippocampus is required for sustained goal-directed behavior. Nat. Neurosci. 22, 770–777 (2019).

130. Ohmura, Y. et al. Serotonin 5-HT7 receptor in the ventral hippocampus modulates the retrieval of fear memory and stress-induced defecation. Int. J. Neuropsychopharmacol. 19, 1–12 (2016).

131. Luchetti, A. et al. Two functionally distinct serotonergic projections into hippocampus. J. Neurosci. 40, 4936–4944 (2020).

132. Kobayashi, Y. et al. Genetic dissection of medial habenula-interpeduncular nucleus pathway function in mice. Front. Behav. Neurosci. 7, 17 (2013).

133. Xu, C. et al. Medial habenula-interpeduncular nucleus circuit contributes to anhedonia- like behavior in a rat model of depression. Front. Behav. Neurosci. 12, 238 (2018).

134. Shih, P. Y. et al. Differential expression and function of nicotinic acetylcholine receptors in subdivisions of medial habenula. J. Neurosci. 34, 9789–9802 (2014).

135. McCallum, S. E., Cowe, M. A., Lewis, S. W. & Glick, S. D. α3β4 nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine in vivo. Neuropharmacology 63, 434–440 (2012).

136. Salas, R., Sturm, R., Boulter, J. & De Biasi, M. Nicotinic receptors in the habenulo- interpeduncular system are necessary for nicotine withdrawal in mice. J. Neurosci. 29, 3014–3018 (2009).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る