リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ATP turnover and glucose dependency in hematopoietic stem/progenitor cells are increased by proliferation and differentiation (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ATP turnover and glucose dependency in hematopoietic stem/progenitor cells are increased by proliferation and differentiation (本文)

綿貫, 慎太郎 慶應義塾大学

2021.03.23

概要

Hematopoietic stem cells (HSCs) are quiescent cells in the bone marrow niche and are relatively dependent on glycolytic ATP production. On the other hand, differentiated cells, including hematopoietic progenitor cells (HPCs), preferentially generate ATP via oxidative phosphorylation. However, it is unclear how cellular differentiation and the cell cycle status affect nutritional requirements and ATP production in HSCs and HPCs. Using a newly developed culture system, we demonstrated that survival of HPCs was strongly dependent on glucose, whereas quiescent HSCs survived for a certain duration without glucose. Among HPCs, granulocyte/monocyte progenitors (GMPs) were particularly dependent on glucose during proliferation. By monitoring the ATP concentration in live cells, we demonstrated that the ATP level was maintained for a short duration without glucose in HSCs, possibly due to their metabolic flexibility. In addition, HSCs exhibited low ATP turnover, whereas HPCs including GMPs demonstrated high ATP turnover and required efficient ATP production from glucose. These findings show that ATP turnover and nutritional requirements differ between HSCs and HPCs according to the cell cycle and differentiation status.

この論文で使われている画像

参考文献

[1] S.H. Orkin, L.I. Zon, Hematopoiesis: an evolving paradigm for stem cell biology, Cell 132 (2008) [631]e[644], https://doi.org/10.1016/j.cell.2008.01.025. S0092-8674(08)00125-6 [pii].

[2] W.M. Yu, X. Liu, J. Shen, O. Jovanovic, E.E. Pohl, S.L. Gerson, T. Finkel, H.E. Broxmeyer, C.K. Qu, Metabolic regulation by the mitochondrial phos- phatase PTPMT1 is required for hematopoietic stem cell differentiation, Cell Stem Cell 12 (2013) 62e74, https://doi.org/10.1016/j.stem.2012.11.022.

[3] M. Maryanovich, Y. Zaltsman, A. Ruggiero, A. Goldman, L. Shachnai, S.L. Zaidman, Z. Porat, K. Golan, T. Lapidot, A. Gross, An MTCH2 pathway repressing mitochondria metabolism regulates haematopoietic stem cell fate, Nat. Commun. 6 (2015) 7901, https://doi.org/10.1038/ncomms8901.

[4] N.S. Chandel, H. Jasper, T.T. Ho, E. Passegue´, Metabolic regulation of stem cell function in tissue homeostasis and organismal ageing, Nat. Cell Biol. 18 (2016) 823e832, https://doi.org/10.1038/ncb3385.

[5] D. Karigane, H. Kobayashi, T. Morikawa, Y. Ootomo, M. Sakai, G. Nagamatsu, Y. Kubota, N. Goda, M. Matsumoto, E.K. Nishimura, T. Soga, K. Otsu, M. Suematsu, S. Okamoto, T. Suda, K. Takubo, p38a activates purine meta- bolism to initiate hematopoietic stem/progenitor cell cycling in response to stress, Cell Stem Cell 19 (2016) 192e204, https://doi.org/10.1016/j.stem.2016.05.013.

[6] T. Schirmer, P.R. Evans, Structural basis of the allosteric behaviour of phos- phofructokinase, Nature 343 (1990) 140e145, https://doi.org/10.1038/ 343140a0.

[7] R.M. Denton, P.J. Randle, B.J. Bridges, R.H. Cooper, A.L. Kerbey, H.T. Pask, D.L. Severson, D. Stansbie, S. Whitehouse, Regulation of mammalian pyruvate dehydrogenase, Mol. Cell. Biochem. 9 (1975) 27e53.

[8] R.A. Harris, J.W. Hawes, K.M. Popov, Y. Zhao, Y. Shimomura, J. Sato, J. Jaskiewicz, T.D. Hurley, Studies on the regulation of the mitochondrial alpha-ketoacid dehydrogenase complexes and their kinases, Adv. Enzym. Regul. 37 (1997) 271e293.

[9] M.J. Kiel, O.H. Yilmaz, T. Iwashita, C. Terhorst, S.J. Morrison, SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells, Cell 121 (2005) 1109e1121, https://doi.org/ 10.1016/j.cell.2005.05.026. S0092-8674(05)00540-4 [pii].

[10] M. Kondo, I.L. Weissman, K. Akashi, Identification of clonogenic common lymphoid progenitors in mouse bone marrow, Cell 91 (1997) 661e672.

[11] K. Akashi, D. Traver, T. Miyamoto, I.L. Weissman, A clonogenic common myeloid progenitor that gives rise to all myeloid lineages, Nature 404 (2000) 193e197, https://doi.org/10.1038/35004599.

[12] H. Kobayashi, T. Morikawa, A. Okinaga, F. Hamano, T. Hashidate-Yoshida, S. Watanuki, D. Hishikawa, H. Shindou, F. Arai, Y. Kabe, M. Suematsu, T. Shimizu, K. Takubo, Environmental optimization enables maintenance of quiescent hematopoietic stem cells Ex Vivo, BioRxiv (2018) 475905, https:// doi.org/10.1101/475905.

[13] S. Comazzetto, M.M. Murphy, S. Berto, E. Jeffery, Z. Zhao, S.J. Morrison, Restricted hematopoietic progenitors and erythropoiesis require SCF from leptin Receptor+ niche cells in the bone marrow, Cell Stem Cell 24 (2019) 477e486, https://doi.org/10.1016/j.stem.2018.11.022, e476.

[14] K. Takubo, G. Nagamatsu, C.I. Kobayashi, A. Nakamura-Ishizu, H. Kobayashi, E. Ikeda, N. Goda, Y. Rahimi, R.S. Johnson, T. Soga, A. Hirao, M. Suematsu, T. Suda, Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells, Cell Stem Cell 12 (2013) 49e61, https://doi.org/10.1016/j.stem.2012.10.011.

[15] K. Takubo, N. Goda, W. Yamada, H. Iriuchishima, E. Ikeda, Y. Kubota, H. Shima, R.S. Johnson, A. Hirao, M. Suematsu, T. Suda, Regulation of the HIF-1 alpha level is essential for hematopoietic stem cells, Cell Stem Cell 7 (2010) [391]e[402], https://doi.org/10.1016/j.stem.2010.06.020. S1934-5909(10)00344-9 [pii].

[16] F. Buttgereit, M.D. Brand, A hierarchy of ATP-consuming processes in mammalian cells, Biochem. J. 312 (Pt 1) (1995) 163e167.

[17] I. Beerman, J. Seita, M.A. Inlay, I.L. Weissman, D.J. Rossi, Quiescent hemato- poietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle, Cell Stem Cell 15 (2014) 37e50, https://doi.org/10.1016/ j.stem.2014.04.016.

[18] M. Nakano, H. Imamura, T. Nagai, H. Noji, Ca2+ regulation of mitochondrial ATP synthesis visualized at the single cell level, ACS Chem. Biol. 6 (7) (2011) 709e715, https://doi.org/10.1021/cb100313n.

[19] Y.H. Wang, W.J. Israelsen, D. Lee, V.W. Yu, N.T. Jeanson, C.B. Clish, L.C. Cantley, M.G. Vander Heiden, D.T. Scadden, Cell-state-specific metabolic dependency in hematopoiesis and leukemogenesis, Cell 158 (2014) 1309e1323, https://doi.org/10.1016/j.cell.2014.07.048.

[20] L. Oburoglu, S. Tardito, V. Fritz, S.C. de Barros, P. Merida, M. Craveiro, J. Mamede, G. Cretenet, C. Mongellaz, X. An, D. Klysz, J. Touhami, M. Boyer- Clavel, J.L. Battini, V. Dardalhon, V.S. Zimmermann, N. Mohandas, E. Gottlieb, M. Sitbon, S. Kinet, N. Taylor, Glucose and glutamine metabolism regulate human hematopoietic stem cell lineage specification, Cell Stem Cell 15 (2014) 169e184, https://doi.org/10.1016/j.stem.2014.06.002.

[21] F. Paul, Y.A. Arkin, A. Giladi, D.A. Jaitin, E. Kenigsberg, H.,. Keren-Shaul, E. David, Transcriptional heterogeneity and lineage commitment in myeloid progenitors, Cell 163 (7) (2015) 1663e1677, https://doi.org/10.1016/ j.cell.2015.12.046.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る