リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phase Evolution of Trirutile Li₀.₅FeF₃ for Lithium-Ion Batteries」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phase Evolution of Trirutile Li₀.₅FeF₃ for Lithium-Ion Batteries

Zheng, Yayun Tawa, Shinya Hwang, Jinkwang Orikasa, Yuki Matsumoto, Kazuhiko Hagiwara, Rika 京都大学 DOI:10.1021/acs.chemmater.0c03544

2021.02

概要

Extensive studies on trirutile Li₀.₅FeF₃ phase have been commissioned in the context of the Li–Fe–F system for Li-ion batteries. However, progress in electrochemical and structural studies has been greatly encumbered by the low electrochemical reactivity of this material. In order to advance this class of materials, a comprehensive study into the mechanisms of this phase is necessary. Therefore, herein, we report for the first time overall reaction mechanisms of ordered trirutile Li₀.₅FeF₃ at elevated temperatures of 90 °C with the aid of a thermally stable ionic liquid electrolyte. Ordered trirutile Li₀.₅FeF₃ is prepared by high-energy ball milling combined with heat treatment followed by electrochemical tests, X-ray diffraction, and X-ray absorption spectroscopic analyses. Our results reveal that a reversible topotactic Li⁺ extraction/insertion from/into the trirutile structure occurs in a two-phase reaction with a minor volume change (1.09% between Li₀.₅FeF₃ and Li₀.₁₁FeF₃) in the voltage range of 3.2–4.3 V. The extension of the lower cutoff voltage to 2.5 V results in a conversion reaction to LiF and rutile FeF₂ during discharging. The subsequent charge triggers the formation of the disordered trirutile structure at 4.3 V without showing the reconversion from LiF and rutile FeF₂ to ordered trirutile Li₀.₅FeF₃ or FeF₃.

この論文で使われている画像

参考文献

(1)

Demirocak, D.; Srinivasan, S.; Stefanakos, E. A Review on

Nanocomposite Materials for Rechargeable Li-ion Batteries. Appl. Sci.

2017, 7, 731

(2)

Li, M.; Lu, J.; Chen, Z.; Amine, K. 30 Years of Lithium-Ion

Batteries. Adv. Mater. 2018, 30, 1800561.

(3)

Winter, M.; Barnett, B.; Xu, K. Before Li Ion Batteries.

Chem. Rev. 2018, 118, 11433−11456.

(4)

Shukla, A.; Venugopalan, S.; Hariprakash, B. Nickel-Based

Rechargeable Batteries. J. Power Sources 2001, 100, 125−148.

(5)

Taniguchi, A.; Fujioka, N.; Ikoma, M.; Ohta, A. Development of Nickel/Metal-Hydride Batteries for EVs and HEVs. J. Power

Sources 2001, 100, 117−124.

(6)

Doerffel, D.; Sharkh, S. A Critical Review of Using the

Peukert Equation for Determining the Remaining Capacity of LeadAcid and Lithium-Ion Batteries. J. Power Sources 2006, 155, 395−400.

(7)

Mizushima, K.; Jones, P.; Wiseman, P.; Goodenough, J.

LixCoO2 (0 < x ≤ l): A New Cathode Material for Batteries of High

Energy Density. Solid State Ion. 1981, 15, 783−789.

(8)

Pan, C.; Banks, C.; Song, W.; Wang, C.; Chen, Q.; Ji, X.

Recent Development of LiNixCoyMnzO2: Impact of Micro/Nano Structures for Imparting Improvements in Lithium Batteries. Trans. Nonferrous Met. Soc. China 2013, 23, 108−119.

(9)

Liu, Q.; He, H.; Li, Z.; Liu, Y.; Ren, Y.; Lu, W.; Lu, J.; Stach,

E.; Xie, J. Rate-Dependent, Li-Ion Insertion/Deinsertion Behavior of

LiFePO4 Cathodes in Commercial 18650 LiFePO4 Cells. ACS Appl.

Mater. Interfaces 2014, 6, 3282−3289.

(10) Martha, S.; Nanda, J.; Zhou, H.; Idrobo, J.; Dudney, N.; Pannala, S.; Dai, S.; Wang, J.; Braun, P. Electrode Architectures for High

Capacity Multivalent Conversion Compounds: Iron (ii and iii) Fluoride.

RSC Adv. 2014, 4, 6730−6737.

(11) Li, C.; Chen, K.; Zhou, X.; Maier, J. Electrochemically

Driven Conversion Reaction in Fluoride Electrodes for Energy Storage

Devices. npj Comput. Mater. 2018, 4, 1−15.

(12) Li, H.; Richter, G.; Maier, J. Reversible Formation and Decomposition of LiF Clusters Using Transition Metal Fluorides as Precursors and Their Application in Rechargeable Li Batteries. Adv. Mater.

2003, 15, 736−739.

(13) Li, H.; Balaya, P.; Maier, J. Li-Storage via Heterogeneous

Reaction in Selected Binary Metal Fluorides and Oxides. J. Electrochem. Soc. 2004, 151, A1878−A1885.

(14) Zhou, M.; Zhao, L.; Kitajou, A.; Okada, S.; Yamaki, J.

Mechanism on Exothermic Heat of FeF3 Cathode in Li-Ion Batteries. J.

Power Sources 2012, 203, 103−108.

(15) Kitajou, A.; Eguchi, K.; Ishado, Y.; Setoyama, H.; Okajima,

T.; Okada, S. Electrochemical Properties of Titanium Fluoride with

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

High Rate Capability for Lithium-Ion Batteries. J. Power Sources 2019,

419, 1−5.

(16) Conte, D.; Pinna, N. A Review on the Application of

Iron(III) Fluorides as Positive Electrodes for Secondary Cells. Mater.

Renew. Sustain. Energy 2014, 3, 1−22.

(17) Zhang, N.; Xiao, X.; Pang, H. Transition Metal (Fe, Co, Ni)

Fluoride-Based Materials for Electrochemical Energy Storage. Nanoscale Horiz. 2019, 4, 99−116.

(18) Li, R.; Wu, S.; Yang, Y.; Zhu, Z. Structural and Electronic

Properties of Li-Ion Battery Cathode Material FeF3. J. Phys. Chem. C

2010, 114, 16813−16817.

(19) Li, L.; Meng, F.; Jin, S. High-Capacity Lithium-Ion Battery

Conversion Cathodes Based on Iron Fluoride Nanowires and Insights

into the Conversion Mechanism. Nano Lett. 2012, 12, 6030−6037.

(20) Liu, P.; Vajo, J.; Wang, J.; Li, W.; Liu, J. Thermodynamics

and Kinetics of the Li/FeF3 Reaction by Electrochemical Analysis. J.

Phys. Chem. C 2012, 116, 6467−6473.

(21) Tan, H.; Smith, H.; Kim, L.; Harding, T.; Jones, S.; Fultz, B.

Electrochemical Cycling and Lithium Insertion in Nanostructured FeF 3

Cathodes. J. Electrochem. Soc. 2014, 161, A445−A449.

(22) Kitajou, A.; Tanaka, I.; Tanaka, Y.; Kobayashi, E.;

Setoyama, H.; Okajima, T.; Okada, S. Discharge and Charge Reaction

of Perovskite-type MF3 (M = Fe and Ti) Cathodes for Lithium-Ion Batteries. Electrochemistry 2017, 85, 472−477.

(23) Badway, F.; Cosandey, F.; Pereira, N.; Amatucci, G. Carbon

Metal Fluoride Nanocomposites High-Capacity Reversible Metal Fluoride Conversion Materials as Rechargeable Positive Electrodes for Li

Batteries. J. Electrochem. Soc. 2003, 150, A1318−A1327.

(24) Badway, F.; Pereira, N.; Cosandey, F.; Amatuccia, G. Carbon-Metal Fluoride Nanocomposites Structure and Electrochemistry of

FeF3:C. J. Electrochem. Soc. 2003, 150, A1209−A1218.

(25) Doe, R.; Persson, K.; Meng, Y.; Ceder, G. First-Principles

Investigation of the Li-Fe-F Phase Diagram and Equilibrium and

Nonequilibrium Conversion Reactions of Iron Fluorides with Lithium.

Chem. Mater. 2008, 20, 5274−5283.

(26) Yamakawa, N.; Jiang, M.; Key, B.; Grey, C. Identifying the

Local Structures Formed during Lithiation of the Conversion Material,

Iron Fluoride, in a Li Ion Battery: A Solid-State NMR, X-ray Diffraction, and Pair Distribution Function Analysis Study. J. Am. Chem. Soc.

2009, 131, 10525−10536.

(27) Li, L.; Jacobs, R.; Gao, P.; Gan, L.; Wang, F.; Morgan, D.;

Jin, S. Origins of Large Voltage Hysteresis in High-Energy-Density

Metal Fluoride Lithium-Ion Battery Conversion Electrodes. J. Am.

Chem. Soc. 2016, 138, 2838−2848.

(28) Shachar, G.; Makovsky, J.; Shaked, H. Neutron-Diffraction

Study of the Magnetic Structure of the Trirutile LiFe2F6. Phys. Rev. B

1972, 6, 1968−1974.

(29) Fourquet, J.; Samedi, E.; Calage, Y. Le Trirutile Ordonné

LiFe2F6: Croissance Cristalline et étude Structurale. J. Solid State

Chem. 1988, 77, 84−89.

(30) Martin, A.; Doublet, M.; Kemnitz, E.; Pinna, N. Reversible

Sodium and Lithium Insertion in Iron Fluoride Perovskites. Adv. Funct.

Mater. 2018, 28, 1802057.

(31) Viebahn, W.; Rudorff, W.; Kornelson, H. Fluor-Trirutile

VI

LiMeIIMeIIIF6 und zwei neue Sauerstoflf-Trirutile LiMe Me O6. Z.

Naturforsch. B 1967, 22, 1218.

(32) Viebahn, W.; Rudorff, W.; Viebahn-Hänsler, R. Untersuchungen an Ternären und Quaternären Fluoriden III: Fluortrirutile

und weitere Lithiumhexafluorometallate, LiMeIIMeIIIF6. Sauerländer

1969, 23, 503−510.

(33) Portier, J.; Tressaud, A.; Pape, R.; Hagenmuller, P. CHIMIE

MINERALE. Étude Cristallographique at Magnétique d’un Fluorure

inédit de Type Trirutile. C. R. Acad. Sci. (Paris), Serie C 1968, 267,

1711−1713.

(34) Greenwood, N.; Howe, A.; Menil, F. Mössbauer Studies of

Order and Disorder in Rutile and Trirutile Compounds derived from

FeF2. J. Chem. Soc. A 1971, 2218−2224.

(35) Wintenberger, M. Determination de la Structure Magnetique

de LiFe2F6 par Diffraction Neutronique. Solid State Commun. 1972, 10,

739−744.

(36) Liao, P.; Li, J.; Dahn, J. Lithium Intercalation in LiFe 2F6 and

LiMgFeF6 Disordered Trirutile-Type Phases. J. Electrochem. Soc.

2010, 157, A355−A361.

(37) Liao, P.; Dunlap, R.; Dahn, J. In Situ Mössbauer Effect

Study of Lithium Intercalation in LiFe2F6. J. Electrochem. Soc. 2010,

157, A1080−A1084.

(38) Zheng, Y.; Li, R.; Wu, S.; Wen, Y.; Zhu, Z.; Yang, Y. FirstPrinciples Investigation on the Lithium Ion Insertion/Extraction in Trirutile LixFeF3, Electrochemistry 2013, 81, 12−15.

(39) Lin, L.; Xu, Q.; Zhang, Y.; Zhang, J.; Liang, Y.; Dong, S.

Ferroelectric Ferrimagnetic LiFe2F6: Charge-Ordering-Mediated Magnetoelectricity. Phys. Rev. Mater. 2017, 1, 1−8.

(40) Mori, M.; Tanaka, S.; Senoh, H.; Matsui, K.; Okumura, T.;

Sakaebe, H.; Kiuchi, H.; Matsubara, E. First-Principles Calculations of

the Atomic Structure and Electronic States of Li xFeF3. Phys. Rev. B

2019, 100, 035128.

(41) Hwang, J.; Matsumoto, K.; Hagiwara, R. Na3V2(PO4)3/C

Positive Electrodes with High Energy and Power Densities for Sodium

Secondary Batteries with Ionic Liquid Electrolytes That Operate across

Wide Temperature Ranges. Adv. Sustain. Syst. 2018, 2, 1700171.

(42) Matsumoto, K.; Hwang, J.; Kaushik, S.; Chen, C.; Hagiwara,

R. Advances in Sodium Secondary Batteries Utilizing Ionic Liquid

Electrolytes. Energy Environ. Sci. 2019, 12, 3247−3287.

(43) Lin, X.; Salari, M.; Arava, L.; Ajayan, P.; Grinstaff, M. High

Temperature Electrical Energy Storage: Advances, Challenges, and

Frontiers. Chem. Soc. Rev. 2016, 45, 5848−5887.

(44) Rodrigues, M.-T.; Babu, G.; Gullapalli, H.; Kalaga, K.;

Sayed, F.; Kato, K.; Joyner, J.; Ajayan, P. A Materials Perspective on

Li-ion Batteries at Extreme Temperatures. Nat. Energy 2017, 2, 17108.

(45) Guidotti, R.; Reinhardt, F.; Odinek, J. Overview of HighTemperature Batteries for Geothermal and Oil/Gas Borehole Power

Sources. J. Power Sources 2004, 136, 257−262.

(46) Lewandowski, A.; Świderska-Mocek, A. Ionic Liquids as

Electrolytes for Li-ion Batteries—An Overview of Electrochemical

Studies. J. Power Sources 2009, 194, 601−609.

(47) Armand, M.; Endres, F.; MacFarlane, D.; Ohno, H.; Scrosati,

B. Ionic-Liquid Materials for the Electrochemical Challenges of the

Future. Nat. Mater. 2009, 8, 621−629.

(48) MacFarlane, D.; Tachikawa, N.; Forsyth, M.; Pringle, J.;

Howlett, P.; Elliott, G.; Davis, J.; Watanabe, M.; Simon, P.; Angell, C.

Energy Applications of Ionic Liquids. Energy Environ. Sci. 2014, 7,

232−250.

(49) MacFarlane, D.; Forsyth, M.; Howlett, P.; Kar, M.; Passerini,

S.; Pringle, J.; Ohno, H.; Watanabe, M.; Yan, F.; Zheng, W.; Zhang,

S.; Zhang, J. Ionic Liquids and Their Solid-state Analogues as Materials for Energy Generation and Storage. Nat. Rev. Mater. 2016, 1, 15005.

(50) Watanabe, M.; Thomas, M.; Zhang, S.; Ueno, K.; Yasuda,

T.; Dokko, K. Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chem. Rev. 2017, 117, 7190−7239.

(51) Yang, Q.; Zhang, Z.; Sun, X.; Hu, Y.; Xing, H.; Dai, S. Ionic

Liquids and Derived Materials for Lithium and Sodium Batteries.

Chem. Soc. Rev. 2018, 47, 2020−2064.

(52) Basile, A.; Hilder, M.; Makhlooghiazad, F.; Pozo-Gonzalo,

C.; MacFarlane, D.; Howlett, P.; Forsyth, M. Ionic Liquids and Organic

Ionic Plastic Crystals: Advanced Electrolytes for Safer High Performance Sodium Energy Storage Technologies. Adv. Energy Mater. 2018,

8, 1703491.

(53) Torimoto, T.; Tsuda, T.; Okazaki, K.; Kuwabata, S. New

Frontiers in Materials Science Opened by Ionic Liquids. Adv. Mater.

2010, 22, 1196−1221.

(54) Ishikawa, M.; Sugimoto, T.; Kikuta, M.; Ishiko, E.; Kono,

M. Pure Ionic Liquid Electrolytes Compatible with A Graphitized Carbon Negative Electrode in Rechargeable Lithium-Ion Batteries. J.

Power Sources 2006, 162, 658−662.

(55) Matsumoto, H.; Sakaebe, H.; Tatsumi, K.; Kikuta, M.;

Ishiko, E.; Kono, M. Fast Cycling of Li/LiCoO2 Cell with Low-Viscosity Ionic Liquids Based on bis(fluorosulfonyl)imide [FSI]−. J. Power

Sources 2006, 160, 1308−1313.

(56) Shkrob, I.; Marin, T.; Zhu, Y.; Abraham, D. Why

Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry. J.

Phys. Chem. C 2014, 118, 19661−19671.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(57) Zhang, H.; Feng, W.; Nie, J.; Zhou, Z. Recent Progresses on

Electrolytes of Fluorosulfonimide Anions for Improving the Performances of Rechargeable Li and Li-Ion Battery. J. Fluorine Chem. 2015,

174, 49−61.

(58) Matsumoto, K.; Nishiwaki, E.; Hosokawa, T.; Tawa, S.;

Nohira, T.; Hagiwara, R. Thermal, Physical, and Electrochemical Properties of Li[N(SO2F)2]-[1-Ethyl-3-methylimidazolium][N(SO2F)2]

Ionic Liquid Electrolytes for Li Secondary Batteries Operated at Room

and Intermediate Temperatures. J. Phys. Chem. C 2017, 121,

9209−9219.

(59) Hwang, J.; Okada, H.; Haraguchi, R.; Tawa, S.; Matsumoto,

K.; Hagiwara, R. Ionic Liquid Electrolyte for Room to Intermediate

Temperature Operating Li Metal Batteries: Dendrite Suppression and

Improved Performance. J. Power Sources 2020, 453, 227911.

(60) Guerfi, A.; Duchesne, S.; Kobayashi, Y.; Vijh, A.; Zaghib,

K. LiFePO4 and Graphite Electrodes with Ionic Liquids Based on

bis(fluorosulfonyl)imide (FSI)− for Li-ion Batteries. J. Power Sources

2008, 175, 866−873.

(61) Yamagata, M.; Matsui, Y.; Sugimoto, T.; Kikuta, M.; Higashizaki, T.; Kono, M.; Ishikawa, M. High-Performance Graphite

Negative Electrode in A bis(fluorosulfonyl)imide-Based Ionic Liquid.

J. Power Sources 2013, 227, 60−64.

(62) Toby, B. EXPGUI, A Graphical User Interface for GSAS. J.

Appl. Cryst. 2001, 34, 210−213.

(63) Rodríguez-Carvajal, J.; Roisnel, T. Line Broadening Analysis Using FULLPROF*: Determination of Microstructural Properties.

Mater. Sci. Forum 2004, 443-444, 123−126.

(64) Momma, K.; Izumi, F. VESTA: A Three-Dimensional Visualization System for Electronic and Structural Analysis. J. Appl. Crystallogr. 2008, 41, 653−658.

(65) Kinast, E.; Zawislak, L.; da Cunha, J.; Antonietti, V.; de

Vasconcellos, M.; dos Santos, C. Coexistence of Rutile and Trirutile

Phases in a Natural Tapiolite Sample. J. Solid State Chem. 2002, 163,

218−223.

(66) Nishijima, M.; Gocheva, I. D.; Okada, S.; Doi, T.; Yamaki,

J.; Nishida, T. Cathode Properties of Metal Trifluorides in Li and Na

Secondary Batteries. J. Power Sources 2009, 190, 558−562.

(67) Yabuuchi, N.; Sugano, M.; Yamakawa, Y.; Nakai, I.; Sakamoto, K.; Muramatsu, H.; Komaba, S. Effect of Heat-Treatment Process on FeF3 Nanocomposite Electrodes for Rechargeable Li Batteries.

J. Mater. Chem. 2011, 21, 10035.

(68) Tawa, S.; Sato, Y.; Orikasa, Y.; Matsumoto, K.; Hagiwara,

R. Lithium Fluoride/Iron Difluoride Composite Prepared by a Fluorolytic Sol–Gel Method: Its Electrochemical Behavior and Charge-Discharge Mechanism as a Cathode Material for Lithium Secondary Batteries. J. Power Sources 2019, 412, 180−188.

(69) Fan, X.; Hu, E.; Ji, X.; Zhu, Y.; Han, F.; Hwang, S.; Liu, J.;

Bak, S.; Ma, Z.; Gao, T.; Liou, S.; Bai, J.; Yang, X.; Mo, Y.; Xu, K.;

Su, D.; Wang, C. High Energy-Density and Reversibility of Iron Fluoride Cathode Enabled via An Intercalation-Extrusion Reaction. Nat.

Commun. 2018, 9, 2324.

(70) Han, Y.; Li, H.; Li, J.; Si, H.; Zhu, W.; Qiu, X. Hierarchical

Mesoporous Iron Fluoride with Superior Rate Performance for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 32869−32874.

(71) Jiang, M.; Wang, X.; Hu, H.; Wei, S.; Fu, Y.; Shen, Y. In

Situ Growth and Performance of Spherical Fe2F5·H2O Nanoparticles in

Multi-Walled Carbon Nanotube Network Matrix as Cathode Material

for Sodium Ion Batteries. J. Power Sources 2016, 316, 170−175.

(72) Kim, S.; Seo, D.; Gwon, H.; Kim, J.; Kang, K. Fabrication

of FeF3 Nanoflowers on CNT Branches and their Application to High

Power Lithium Rechargeable Batteries. Adv. Mater. 2010, 22,

5260−5264.

(73) Kang, W.; Li, F.; Zhao, Y.; Qiao, C.; Ju, J.; Cheng, B. Fabrication of Porous Fe2O3/PTFE Nanofiber Membranes and their Application as A Catalyst for Dye Degradation. RSC Adv. 2016, 6,

32646−32652.

(74) Kim, M.; Lee, S.; Kang, B. Fast-Rate Capable Electrode Material with Higher Energy Density than LiFePO4: 4.2 V LiVPO4F Synthesized by Scalable Single-Step Solid-State Reaction. Adv. Sci. 2016,

3, 1500366.

(75) Kim, S.; Nam, K.; Seo, D.; Hong, J.; Kim, H.; Gwon, H.;

Kang, K. Energy Storage in Composites of A Redox Couple Host and

A Lithium Ion Host. Nano Today 2012, 7, 168−173.

(76) Reimers, J.; Dahn, J. Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2. J. Electrochem.

Soc. 1992, 139, 2091−2097.

(77) Koerver, R.; Zhang, W.; de Biasi, L.; Schweidler, S.; Kondrakov, A.; Kolling, S.; Brezesinski, T.; Hartmann, P.; Zeier, W.; Janek,

J. Chemo-Mechanical Expansion of Lithium Electrode Materials – on

the Route to Mechanically Optimized All-Solid-State Batteries. Energy

Environ. Sci. 2018, 11, 2142−2158.

(78) Kanamura, T.; Naito, H.; Yao, T.; Takehara, Z. Structural

Change of the LiMn2O4 Spinel Structure Induced by Extraction of Lithium. J. Muter. Chem. 1996, 6, 33−36.

(79) Asadi, A.; Aghamiri, S.; Talaie, M. Molecular Dynamics

Simulation of A LixMn2O4 Spinel Cathode Material in Li-ion Batteries.

RSC Advances 2016, 6, 115354−115363.

(80) Gibot, P.; Casas-Cabanas, M.; Laffont, L.; Levasseur, S.;

Carlach, P.; Hamelet, S.; Tarascon, J. M.; Masquelier, C. Room-Temperature Single-Phase Li Insertion/Extraction in Nanoscale LixFePO4.

Nat. Mater. 2008, 7, 741−747.

(81) Ramana, C.; Mauger, A.; Gendron, F.; Julien, C.; Zaghib, K.

Study of the Li-Insertion/Extraction Process in LiFePO4/FePO4. J.

Power Sources 2009, 187, 555−564.

(82) Srivastava, U.; Nigam, H. X-Ray Absorption Edge Spectrometry (XAES) as Applied to Coordination Chemistry. Coordin.

Chem. Rev. 1972, 9, 275−310.

(83) Parsai, N.; Mishra, A. Study of XAFS of some Fe Compounds and Determination of First Shell Radial Distance. J. Phys. Conf.

Ser. 2017, 836, 012045.

(84) Yamamoto, T. Assignment of Pre-Edge Peaks in K-edge Xray Absorption Spectra of 3D Transition Metal Compounds: Electric

Dipole or Quadrupole? X-Ray Spectrom. 2008, 37, 572−584.

(85) Biasi, L.; Lieser, G.; Drager, C.; Indris, S.; Rana, J.; Schumacher, G.; Monig, R.; Ehrenbery, H.; Binder, J.; Gebwein, H.

LiCaFeF6: A Zero-Strain Cathode Material for Use in Li-Ion Batteries.

J. Power Sources 2017, 362, 192−201.

(86) Hwang, I.; Jung, S.; Jeong, E.; Kim, H.; Cho, S.; Ku, K.;

Kim, H.; Yoon, W.; Kang, K. NaF-FeF2 Nanocomposite: New Type of

Na-Ion Battery Cathode Material. Nano Res. 2017, 10, 4388−4397.

(87) Tawa, S.; Matsumoto, K.; Hagiwara, R. Reaction Pathways

of Iron Trifluoride Investigated by Operation at 363 K Using an Ionic

Liquid Electrolyte. J. Electrochem.Soc. 2019, 166, A2105−A2110.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

TOC graphic

14

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る