リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Delithiation of LiFePO₄ with Cl₂ Gas: Preparation of FePO₄ for Sodium-Ion Batteries with High Li Recovery」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Delithiation of LiFePO₄ with Cl₂ Gas: Preparation of FePO₄ for Sodium-Ion Batteries with High Li Recovery

Nozaki, Fumiyasu Shomura, Sho Hwang, Jinkwang Matsumoto, Kazuhiko Hagiwara, Rika 京都大学 DOI:10.1021/acssuschemeng.2c05775

2023.01.23

概要

Triphylite NaFePO₄ is considered a promising positive electrode for sodium-ion batteries due to its exclusive composition of abundant elements, high thermal stability, and theoretical capacity (154 mAh g⁻¹). However, the low thermodynamic stability of triphylite NaFePO₄ precludes direct synthesis techniques such as the solid-state route, thus hampering its commercial viability. Herein, we report a novel preparation of heterosite FePO₄, a triphylite NaFePO₄ desodiation product, through the delithiation of triphylite (olivine) LiFePO₄ using Cl₂ gas. In addition to the scalability prospects, the present technique efficiently recovers the lithium source in a utilitarian form. The prepared FePO₄ electrode yields a high reversible capacity of 127 mAh (g-FePO₄)⁻¹ at 0.05C (1C = 154 mA g⁻¹) and good cycling performance (capacity retention of 98.5% after 250 cycles at 1C). X-ray diffraction revealed the reversible phase transition between heterosite FePO₄ and triphylite NaFePO₄ during charge–discharge.

この論文で使われている画像

参考文献

(1) Yan, G.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.;

Freeland, J. W.; Tarascon, J.-M. Higher energy and safer sodium ion batteries via an

electrochemically made disordered Na3V2(PO4)2F3 material. Nat. Commun. 2019, 10, 585, DOI

10.1038/s41467-019-08359-y.

(2) Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Research Development on Sodium-Ion

Batteries. Chem. Rev. 2014, 114, 11636-11682, DOI 10.1021/cr500192f.

(3) Hirsh, H. S.; Li, Y.; Tan, D. H. S.; Zhang, M.; Zhao, E.; Meng, Y. S. Sodium-Ion Batteries

Paving the Way for Grid Energy Storage. Adv. Energy Mater. 2020, 10, 2001274, DOI

10.1002/aenm.202001274.

(4) Yang, C.; Xin, S.; Mai, L.; You, Y. Materials Design for High-Safety Sodium-Ion Battery. Adv.

Energy Mater. 2021, 11, 2000974, DOI 10.1002/aenm.202000974.

(5) Shen, Z.; Guo, S.; Liu, C.; Sun, Y.; Chen, Z.; Tu, J.; Liu, S.; Cheng, J.; Xie, J.; Cao, G.; Zhao,

X. Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries. ACS Sustain. Chem.

Eng. 2018, 6, 16121-16129, DOI 10.1021/acssuschemeng.8b02758.

(6) Kim, H.; Shakoor, R. A.; Park, C.; Lim, S. Y.; Kim, J.-S.; Jo, Y. N.; Cho, W.; Miyasaka, K.;

Kahraman, R.; Jung, Y.; Choi, J. W. Na2FeP2O7 as a Promising Iron-Based Pyrophosphate

Cathode for Sodium Rechargeable Batteries: A Combined Experimental and Theoretical Study.

Adv. Funct. Mater. 2013, 23, 1147-1155, DOI 10.1002/adfm.201201589.

(7) Bianchini, M.; Fauth, F.; Brisset, N.; Weill, F.; Suard, E.; Masquelier, C.; Croguennec, L.

Comprehensive Investigation of the Na3V2(PO4)2F3–NaV2(PO4)2F3 System by Operando High

Resolution Synchrotron X-ray Diffraction. Chem. Mater. 2015, 27, 3009-3020, DOI

10.1021/acs.chemmater.5b00361.

15

(8) Zhang, B.; Ma, K.; Lv, X.; Shi, K.; Wang, Y.; Nian, Z.; Li, Y.; Wang, L.; Dai, L.; He, Z. Recent

advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: Synthesis,

modifications,

and

perspectives.

J.

Alloys

Compd.

2021,

867,

159060,

DOI

10.1016/j.jallcom.2021.159060.

(9) Jin, T.; Li, H.; Zhu, K.; Wang, P.-F.; Liu, P.; Jiao, L. Polyanion-type cathode materials for

sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342-2377, DOI 10.1039/C9CS00846B.

(10) Li, H.; Wang, T.; Wang, S.; Wang, X.; Xie, Y.; Hu, J.; Lai, Y.; Zhang, Z. Scalable Synthesis

of the Na2FePO4F Cathode Through an Economical and Reliable Approach for Sodium-Ion

Batteries. ACS Sustain. Chem. Eng. 2021, 9, 11798-11806, DOI 10.1021/acssuschemeng.1c03355.

(11) Cao, Y.; Liu, Y.; Zhao, D.; Xia, X.; Zhang, L.; Zhang, J.; Yang, H.; Xia, Y. Highly Stable

Na3Fe2(PO4)3@Hard Carbon Sodium-Ion Full Cell for Low-Cost Energy Storage. ACS Sustain.

Chem. Eng. 2020, 8, 1380-1387, DOI 10.1021/acssuschemeng.9b05098.

(12) Özdogru, B.; Dykes, H.; Gregory, D.; Saurel, D.; Murugesan, V.; Casas-Cabanas, M.; Çapraz,

Ö. Ö. Elucidating cycling rate-dependent electrochemical strains in sodium iron phosphate

cathodes

for

Na-ion

batteries.

J.

Power

Sources

2021,

507,

230297,

DOI

10.1016/j.jpowsour.2021.23029.

(13) Rahmawati, F.; Faiz, Z.; Romadhona, D. A. N.; Saraswati, T. E.; Lestari, W. W. The

performance of sodium ion battery with NaFePO4 cathode prepared from local iron sand. IOP Conf.

Ser.: Mater. Sci. Eng. 2020, 902, 012008, DOI 10.1088/1757-899x/902/1/012008.

(14) Xiao, J.; Li, X.; Tang, K.; Wang, D.; Long, M.; Gao, H.; Chen, W.; Liu, C.; Liu, H.; Wang,

G. Recent progress of emerging cathode materials for sodium ion batteries. Mater. Chem. Front.

2021, 5, 3735-3764, DOI 10.1039/d1qm00179e.

16

(15) Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F. Structure and Stability of Sodium

Intercalated Phases in Olivine FePO4. Chem. Mater. 2010, 22, 4126-4128, DOI

10.1021/cm101377h.

(16) Sapra, S. K.; Pati, J.; Dwivedi, P. K.; Basu, S.; Chang, J. K.; Dhaka, R. S. A comprehensive

review on recent advances of polyanionic cathode materials in Na‐ion batteries for cost effective

energy storage applications. WIREs Energy Environ. 2021, 10, e400, DOI 10.1002/wene.400.

(17) Hwang, J.; Matsumoto, K.; Orikasa, Y.; Katayama, M.; Inada, Y.; Nohira, T.; Hagiwara, R.

Crystalline maricite NaFePO4 as a positive electrode material for sodium secondary batteries

operating at intermediate temperature. J. Power Sources 2018, 377, 80-86, DOI

10.1016/j.jpowsour.2017.12.003.

(18) Liu, Y.; Zhang, N.; Wang, F.; Liu, X.; Jiao, L.; Fan, L.-Z. Approaching the Downsizing Limit

of Maricite NaFePO4 toward High-Performance Cathode for Sodium-Ion Batteries. Adv. Funct.

Mater. 2018, 28, 1801917, DOI 10.1002/adfm.201801917.

(19) Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G.

Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion

intercalation materials. Energy Environ. Sci. 2011, 4, 3680-3688, DOI 10.1039/C1EE01782A.

(20) Zaghib, K.; Trottier, J.; Hovington, P.; Brochu, F.; Guerfi, A.; Mauger, A.; Julien, C. M.

Characterization of Na-based phosphate as electrode materials for electrochemical cells. J. Power

Sources 2011, 196, 9612-9617, DOI 10.1016/j.jpowsour.2011.06.061.

(21) Kim, J.; Seo, D.-H.; Kim, H.; Park, I.; Yoo, J.-K.; Jung, S.-K.; Park, Y.-U.; Goddard Iii, W.

A.; Kang, K. Unexpected discovery of low-cost maricite NaFePO4 as a high-performance electrode

for Na-ion batteries. Energy Environ. Sci. 2015, 8, 540-545, DOI 10.1039/C4EE03215B.

17

(22) Hwang, J.; Matsumoto, K.; Nohira, T.; Hagiwara, R. Electrochemical Sodiation-desodiation

of Maricite NaFePO4 in Ionic Liquid Electrolyte. Electrochemistry 2017, 85, 675-679, DOI

10.5796/electrochemistry.85.675.

(23) Oh, S.-M.; Myung, S.-T.; Hassoun, J.; Scrosati, B.; Sun, Y.-K. Reversible NaFePO4 electrode

for

sodium

secondary

batteries.

Electrochem.

Commun.

2012,

22,

149-152,

DOI

10.1016/j.elecom.2012.06.014.

(24) Heubner, C.; Heiden, S.; Schneider, M.; Michaelis, A. In-situ preparation and electrochemical

characterization of submicron sized NaFePO4 cathode material for sodium-ion batteries.

Electrochim. Acta 2017, 233, 78-84, DOI 10.1016/j.electacta.2017.02.107.

(25) Fang, Y.; Liu, Q.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. High-Performance Olivine NaFePO4

Microsphere Cathode Synthesized by Aqueous Electrochemical Displacement Method for Sodium

Ion Batteries. ACS Appl. Mater. Interfaces 2015, 7, 17977-17984, DOI 10.1021/acsami.5b04691.

(26) Wongittharom, N.; Lee, T.-C.; Wang, C.-H.; Wang, Y.-C.; Chang, J.-K. Electrochemical

performance of Na/NaFePO4 sodium-ion batteries with ionic liquid electrolytes. J. Mater. Chem.

A 2014, 2, 5655-5661, DOI 10.1039/c3ta15273a.

(27) Casas-Cabanas, M.; Roddatis, V. V.; Saurel, D.; Kubiak, P.; Carretero-González, J.;

Palomares, V.; Serras, P.; Rojo, T. Crystal chemistry of Na insertion/deinsertion in FePO4–

NaFePO4. J. Mater. Chem. 2012, 22, 17421, DOI 10.1039/c2jm33639a.

(28) Fernández-Ropero, A. J.; Saurel, D.; Acebedo, B.; Rojo, T.; Casas-Cabanas, M.

Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion

batteries. J. Power Sources 2015, 291, 40-45, DOI 10.1016/j.jpowsour.2015.05.006.

18

(29) Berlanga, C.; Monterrubio, I.; Armand, M.; Rojo, T.; Galceran, M.; Casas-Cabanas, M. CostEffective Synthesis of Triphylite-NaFePO4 Cathode: A Zero-Waste Process. ACS Sustain. Chem.

Eng. 2019, 8, 725-730, DOI 10.1021/acssuschemeng.9b05736.

(30) Hsieh, H.-W.; Wang, C.-H.; Huang, A.-F.; Su, W.-N.; Hwang, B. J. Green chemical

delithiation of lithium iron phosphate for energy storage application. Chem. Eng. J. 2021, 418,

129191, DOI 10.1016/j.cej.2021.129191.

(31) Gangaja, B.; Nair, S.; Santhanagopalan, D. Reuse, Recycle, and Regeneration of LiFePO 4

Cathode from Spent Lithium-Ion Batteries for Rechargeable Lithium- and Sodium-Ion Batteries.

ACS Sustain. Chem. Eng. 2021, 9, 4711-4721, DOI 10.1021/acssuschemeng.0c08487.

(32) Mahandra, H.; Ghahreman, A. A sustainable process for selective recovery of lithium as

lithium phosphate from spent LiFePO4 batteries. Resour. Conserv. Recycl. 2021, 175, 105883,

DOI 10.1016/j.resconrec.2021.105883.

(33) Hwang, J.; Takeuchi, K.; Matsumoto, K.; Hagiwara, R. NASICON vs. Na metal: a new

counter electrode to evaluate electrodes for Na secondary batteries. J. Mater. Chem. A 2019, 7,

27057-27065, DOI 10.1039/c9ta09036c.

(34) Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron

powder diffraction. Phys. B: Condens. Matter 1993, 192, 55-69, DOI 10.1016/09214526(93)90108-I.

(35) Gangadharan, R.; Namboodiri, P. N. N.; Prasad, K. V.; Viswanathan, R. The lithium—thionyl

chloride battery — a review. J. Power Sources 1979, 4, 1-9, DOI 10.1016/0378-7753(79)800324.

(36) Venkatasetty, H. V.; Saathoff, D. J. Properties of LiAlCl4‐SOCl2 Solutions for Li / SOCl2

Battery. J. Electrochem. Soc. 1981, 128, 773-777, DOI 10.1149/1.2127503.

19

(37) Grundish, N.; Amos, C.; Goodenough, J. B. Communication—Characterization of

LiAlCl4·xSO2 Inorganic Liquid Li+ Electrolyte. J. Electrochem. Soc. 2018, 165, A1694-A1696,

DOI 10.1149/2.0291809jes.

(38) Gao, T.; Wang, B.; Wang, F.; Li, R.; Wang, L.; Wang, D. LiAlCl 4·3SO2: a promising

inorganic electrolyte for stable Li metal anode at room and low temperature. Ionics 2019, 25, 41374147, DOI 10.1007/s11581-019-02994-7.

(39) Tanibata, N.; Takimoto, S.; Nakano, K.; Takeda, H.; Nakayama, M.; Sumi, H. Metastable

Chloride Solid Electrolyte with High Formability for Rechargeable All-Solid-State Lithium Metal

Batteries. ACS Mater. Lett. 2020, 2, 880-886, DOI 10.1021/acsmaterialslett.0c00127.

(40) Andersson, A. S.; Kalska, B.; Haggstrom, L.; Thomas, J. O. Lithium extraction/insertion in

LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics. 2000, 130,

41-52, DOI 10.1016/S0167-2738(00)00311-8.

(41) Zhu, Y.; Xu, Y.; Liu, Y.; Luo, C.; Wang, C. Comparison of electrochemical performances of

olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale

2013, 5, 780-787, DOI 10.1039/c2nr32758a.

(42) Galceran, M.; Saurel, D.; Acebedo, B.; Roddatis, V. V.; Martin, E.; Rojo, T.; Casas-Cabanas,

M. The mechanism of NaFePO4 (de)sodiation determined by in situ X-ray diffraction. Phys. Chem.

Chem. Phys. 2014, 16, 8837-8842, DOI 10.1039/c4cp01089b.

(43) Lu, J.; Chung, S. C.; Nishimura, S.-i.; Yamada, A. Phase Diagram of Olivine NaxFePO4 (0 <

x < 1). Chem. Mater. 2013, 25, 4557-4565, DOI 10.1021/cm402617b.

(44) Swanson, H. E.; Tatge, E. Aluminum (Cubic). In Standard X-ray Diffraction Powder Patterns,

Vol. 1; National Bureau of Standards, 1953; pp 11-12.

20

Figure 1. Schematic illustration of the synthetic route of FePO4/C by delithiation using Cl2 gas

and the recovery route of the Li sources.

21

Figure 2. XRD patterns with Rietveld refinement results of (a) the pristine LiFePO4/C and (b) the

FePO4/C obtained by delithiation of LiFePO4/C using Cl2 gas.

22

Figure 3. SEM images and EDX mappings of (a) the pristine LiFePO4/C and (b) the FePO4/C

obtained by delithiation of LiFePO4/C using Cl2 gas.

23

Figure 4. Electrochemical performance of the Na/NaFePO4 cell with the 1 mol dm−3 Na[PF6]EC/DMC (1:1 v/v) with 3wt% of FEC addition. The FePO4 obtained by chemical oxidation was

preliminarily discharged at 0.05C prior to these tests. (a) Charge-discharge curves at 0.05C, (b)

rate capability test, (c) cycle performance at 0.2C, and (d) cycle performance at 1C. Fluctuation

observed during the cycle performance test over 1000 cycles is caused by physical shocks to the

test cells.

24

Figure 5. Ex-situ XRD patterns of the FePO4/C electrodes at different states of charge. (1) Before

preliminary discharge (pristine heterosite FePO4), (2) after preliminary discharge (mainly assigned

to NaFePO4), (3) after charge to 32% SOC (mainly assigned to Na2/3FePO4), and (4) after full

charge (mainly assigned to FePO4). The simulated patterns are calculated based on

crystallographic data in previous reports15, 40 using VESTA software. The peak at 44.7° is assigned

to Al metal.44

25

For Table of Contents Use Only

FePO4 obtained by delithiation of LiFePO4 with Cl2 gas is used as an electrode for SIBs. The

delithiated Li source can be recovered.

26

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る