リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Reduced kinetic model for the combustion of n-cetane and heptamethylnonane based on a primary reference fuel reduced kinetic model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Reduced kinetic model for the combustion of n-cetane and heptamethylnonane based on a primary reference fuel reduced kinetic model

Kawanabe, Hiroshi Ishiyama, Takuji 京都大学 DOI:10.1177/1468087420931969

2021.07.01

概要

A reduced kinetic model for the combustion of n-heptane, i-octane, n-cetane and heptamethylnonane was developed based on a prior model designed for use with a primary reference fuel consisting of n-heptane and i-octane. The present model, which can be easily employed in conjunction with a conventional computational fluid dynamics code, contains 59 chemical species and 96 reactions. Predicted ignition delay times under high pressure and temperature conditions were generated using this new kinetic model and compared with those obtained from full kinetic models. The results indicate that the general trends exhibited by the ignition delay times as temperature and pressure are varied are accurately predicted with this reduced model. The present model was also combined with a commercial computational fluid dynamics code and used to simulate the ignition of a diesel spray at high pressure and temperature. Finally, the effects of the cetane number of the fuel on the ignition process were investigated.

この論文で使われている画像

参考文献

1. N. Shimazaki, T Tsurushima and T. Nishimura, “Dual-Mode Combustion Concept with

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Premixed Diesel combustion by Direct Injection near Top Dead Center”, SAE Paper,

2003-01-0742.

2. N. Horibe, K. Takahashi, S. S. Kee, T. Ishiyama, M. Shioji, “The Effects of Injection Conditions

and Combustion Chamber Geometry on Performance and Emissions of DI-PCCI Operation in a

Diesel Engine”, Trans. J. Fuels Lub., 116 (4), (2008), pp. 387-395.

3. S. -C Kong, R. D. Reitz, “Modeling HCCI Engine Combustion Using Detailed Chemical

Kinetics with Combustion of Turbulent Mixing Effects”, ASME Paper 2000-ICE-306, (2000).

4. S. -C Kong, C. D. Marriott, R. D. Reitz and M. Christensen, “Modeling and Experiments of

HCCI Engine Combustion Using Detailed Chemical Kinetics with Multidimensional CFD”,

SAE Paper 2001-01-1026, (2001).

5. K. Saijyo, T. Kojima and K. Nishiwaki, “A Numerical Analysis of the Effect of Mixture

Heterogeneity on Combustion in a Premixed Charge Compression Ignition Engine”, Proc. of

COMODIA (2004), B2-3.

6. H. Kawanabe, R. Yamamoto and T. Ishiyama, “Diesel Combustion Model with Auto-ignition

Process of Non-homogeneous Mixture”, SAE Paper No. 2009-01-1897 (2009).

7. H. Kawanabe, H. Kojima and T. Ishiyama, “Modeling of the Auto-ignition Process of a

Non-homogeneous Mixture in a Diesel Spray for CFD”, SAE Paper, No. 2010-01-0357 (2010).

8. M. P. Halstead, L. J. Kirsch and C. P. Quinn, “The autoignition of hydrocarbon fuels at high

temperatures and pressures – Fitting of a mathematical model” Combustion and Flame 30

(1977), pp. 45-60.

9. M. Schreiber, A. S. Sakak, and A. Lingens, “A Reduced Thermokinetic Model for the

Autoignition of Fuels with Variable Octane Ratings”, Proceedings of 25th international

Symposium on Combustion, 1994, pp. 933-940.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

10. S. Gowdagiri, and M. A. Oehlschlaeger, “Global Reduced Model for Conventional and

Alternative Jet and Diesel Fuel Autoignition”, Energy and Fuels, 28 (2014), pp. 2795-2801.

11. A. Patel, S.-C. Kong and R. D. Reitz, “Development and Validation of a Reduced Reaction

Mechanism for HCCI Engine Simulations”, SAE Paper, 2004-01-0558 (2004).

12. N. Peters, G. Paczko, R. Seiser, K. Seshadri, “Temperature cross-over and nonthermal runaway

at two-stage ignition of n-heptane”, Combustion and Flame, 128 (2002) pp. 38–59.

13. F. Maroteaux, L. Noel, “Numerical investigations on methods to control the rate of heat release

of HCCl combustion using reduced mechanism of n-heptane with a multidimensional CFD

code”, Combust Theory Model (2007) 11:501–25.

14. S. Tanaka, F. Ayala and J. C. Keck, “A reduced chemical kinetic model for HCCI combustion of

primary reference fuels in a rapid compression machine”, Combustion and Flame 133 (2003)

pp. 467-481.

15. T. Tsurushima, “A new skeletal PRF kinetic model for HCCI combustion”, Proc. of the

Combustion Institute, Vol.32, PartII (2009), pp. 2835-2841.

16. H. M. Poon, K. M. Pang, H. K. Ng, S. Gan, and J. Schramm, “Development of

multi-component diesel surrogate fuel models -Part I: Validation of reduced mechanisms of

diesel fuel constituents in 0-D kinetic simulations”, Fuel, 180 (2018), pp. 433-441.

17. Y. Pei, M. Mehl, W. Liu, T. Lu, W. J. Pitz, and S Som, “A Multicomponent Blend as a Diesel

Fuel Surrogate for Compression Ignition Engine Applications”, Journal of Engineering for Gas

Turbines and Power, 137-11l, Paper No: GTP15-1057 (2015).

18. A. Miyoshi, KUCRS software library, revision 2011.01.07m6, available from the author. See

the web: http://akrmys.com/KUCRS/ for update information.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

19. A. Miyoshi, “Systematic Computational Study on the Unimolecular Reactionsof Alkylperoxy

(RO2), Hydroperoxyalkyl (QOOH), andHydroperoxyalkylperoxy (O2QOOH) Radicals”, J.

Phys. Chem. A., 115 (2011), pp. 3301-3325.

20. E. R. Ritter and J. W. Bozzelli, “THERM: Thermodynamic Property Estimation for Gas Phase

Radicals and Molecules”, Int. J. Chem. Kinet., 23, (1991), pp. 767-778.

21. A. B. Liu, D. Mather and R. D. Reitz, “Modeling the Effects of Drop Drag and Breakup on Fuel

Sprays”, SAE Paper 930072, (1993).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) pi = 2MPa

Figure 1

(b) pi = 4MPa

Change of ignition delay time τ against initial temperature for various fuels

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

1100

Ti

900

700

Tamb=1100K

1000K

900K

800K

700K

500 T =350K

fuel

n-heptane

300

Figure 2

Adiabatic mixing temperature

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) pi = 2MPa

Figure 3

(b) pi = 4MPa

Change of ignition delay time τ for adiabatic mixed mixture

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Injector

Thermocouple

Exhaust

valve

Intake valve

Stirrer

φ80

Combustion

chamber

Pressure

sensor

Spark plug

(a) Vessel configuration

Figure 4

(b) Calculation grid system

Constant volume vessel and grid system for calculation

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) Temperature distribution

Figure 5

(b) Temperature profile at A-A’ cross cut

Example of temperature distribution at injection timing

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) pi = 2MPa

Figure 6

(b) pi = 4MPa

Change of spray tip penetration xtip and droplet penetration xdrp

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

pi = 2MPa, Ti = 900K

CN = 90

CN = 40

Inj. duration

dp/dt

Inj. duration

(a) pi = 2MPa, Ti = 900K

pi = 4MPa, Ti = 900K

CN = 90

CN = 40

Inj. duration

dp/dt

Inj. duration

(b) pi = 4MPa, Ti = 900K

Figure 7

Change of pressure p-pi and pressure rise rate dp/dt

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

(a) Constant temperature surface (T=2000K) for CN = 40

(b) Shadow graph image for combustion process (CN = 45)

Figure 8

Spray development and combustion process

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Figure 9

Change of ignition delay time τ against mass fraction of n-cetane

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Table 1

Reaction systems of larger molecular parts for n-cetane, HMN, n-heptane

and i-octane

n-cetane Low Temperature Reactions

No.

Ea

C16H34 + OH

=>

C16H33 + H2O

6.000E+14

0.00

3.000E+03

C16H33 + O2

C16H33O2

4.000E+13

0.00

0.000E+00

2.510E+13

0.00

2.740E+04

1.510E+11

0.00

1.900E+04

1.000E+11

0.00

1.100E+04

3.160E+11

0.00

0.000E+00

2.510E+13

0.00

2.740E+04

Rev /

C16H33O2

C16H32OOH

Rev /

C16H32OOH + O2

O2C16H32OOH

Rev /

O2C16H32OOH

=>

C16KET +OH

8.910E+10

0.00

1.700E+04

C16KET

=>

C14H29CO + CH2O + OH

3.980E+15

0.00

4.300E+04

C14H29CO + O2

=>

C7H14+C7H14+CO+HO2

3.160E+13

0.00

1.000E+04

C16H34 + O2

C16H33 + HO2

2.000E+16

0.00

4.600E+04

1.000E+12

0.00

0.000E+00

6.320E+13

0.00

6.000E+03

3.160E+11

0.00

1.950E+04

Rev /

C16H33 + O2

C16H32 + HO2

Rev /

10

C16H32 + O2

=>

C14H29 + CH2O + HCO

3.160E+13

0.00

1.000E+04

11

C16H34 + HO2

C16H33 + H2O2

1.000E+13

0.00

1.695E+04

12

C16H33

=>

C14H29 + C2H4

2.500E+13

0.00

2.881E+04

13

C14H29

C5H11+C3H6+3C2H4

1.138E+15

-0.42

2.701E+04

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

HMN Low Temperature Reactions

No.

Ea

14

IC16H34 + OH

=>

IC16H33 + H2O

6.000E+13

0.00

3.000E+03

15

IC16H33 + O2

IC16H33O2

5.000E+12

0.00

0.000E+00

2.510E+13

0.00

2.740E+04

1.510E+11

0.00

2.180E+04

1.000E+11

0.00

1.100E+04

1.264E+12

0.00

0.000E+00

2.510E+13

0.00

2.740E+04

Rev /

16

IC16H33O2

IC16H32OOH

Rev /

17

IC16H32OOH + O2

IO2C16H32OOH

Rev /

18

IO2C16H32OOH

=>

IC16KET +OH

8.910E+10

0.00

1.700E+04

19

IC16KET

=>

IC14H29CO + CH2O + OH

3.980E+15

0.00

4.300E+04

20

IC14H29CO + O2

=>

IC8H17+C3H6+C3H5+CO+HO2

3.160E+13

0.00

1.000E+04

21

IC16H34 + O2

IC16H33 + HO2

1.000E+15

0.00

4.600E+04

1.000E+12

0.00

0.000E+00

3.160E+13

0.00

6.000E+03

3.160E+11

0.00

1.950E+04

Rev /

22

IC16H33 + O2

IC16H32 + HO2

Rev /

23

IC16H32 + O2

=>

IC14H29 + CH2O + HCO

3.160E+13

0.00

1.000E+04

24

IC16H34 + HO2

IC16H33 + H2O2

1.000E+13

0.00

1.695E+04

25

IC16H33

=>

IC14H29 + C2H4

3.617E+17

-1.27

2.970E+04

26

IC14H29

IC8H17 + C3H6 + C3H6

7.204E+13

-0.03

2.790E+04

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

n-heptane Low Temperature Reactions

No.

Ea

27

C7H16 + OH

=>

C7H15 + H2O

2.400E+14

0.00

3.000E+03

28

C7H15 + O2

C7H15O2

6.000E+12

0.00

0.000E+00

2.510E+13

0.00

2.740E+04

1.510E+11

0.00

1.900E+04

1.000E+11

0.00

1.100E+04

3.160E+11

0.00

0.000E+00

2.510E+13

0.00

2.740E+04

Rev /

29

C7H15O2

C7H14OOH

Rev /

30

C7H14OOH + O2

O2C7H14OOH

Rev /

31

O2C7H14OOH

=>

C7KET +OH

8.910E+10

0.00

1.700E+04

32

C7KET

=>

C5H11CO + CH2O + OH

2.388E+15

0.00

4.300E+04

33

C5H11CO + O2

=>

C3H7 + C2H3 + CO + HO2

3.160E+13

0.00

1.000E+04

34

C7H16 + O2

C7H15 + HO2

1.000E+16

0.00

4.600E+04

1.000E+12

0.00

0.000E+00

12.64E+12

0.00

6.000E+03

3.160E+11

0.00

1.950E+04

Rev /

35

C7H15 + O2

C7H14 + HO2

Rev /

36

C7H14 + O2

=>

C5H11 + CH2O + HCO

3.160E+13

0.00

1.000E+04

37

C7H16 + HO2

C7H15 + H2O2

1.000E+13

0.00

1.695E+04

38

C7H15

=>

C5H11 + C2H4

2.500E+13

0.00

2.881E+04

39

C5H11

C3H7 + C2H4

1.138E+15

-0.42

2.701E+04

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

i-octane Low Temperature Reactions

No.

Ea

40

IC8H18 + OH

=>

IC8H17 + H2O

6.000E+13

0.00

3.000E+03

41

IC8H17 + O2

IC8H17O2

18.00E+12

0.00

0.000E+00

2.510E+13

0.00

2.740E+04

1.510E+11

0.00

2.180E+04

1.000E+11

0.00

1.100E+04

3.160E+11

0.00

0.000E+00

2.510E+13

0.00

2.740E+04

Rev /

42

IC8H17O2

IC8H16OOH

Rev /

43

IC8H16OOH + O2

IO2C8H16OOH

Rev /

44

IO2C8H16OOH

=>

IC8KET + OH

8.910E+10

0.00

1.700E+04

45

IC8KET

=>

C6H13CO + CH2O + OH

3.980E+14

0.00

4.300E+04

46

C6H13CO + O2

=>

C3H6 + C3H6 + CO + HO2

3.160E+13

0.00

1.000E+04

47

IC8H18 + O2

IC8H17 + HO2

1.000E+16

0.00

4.600E+04

1.000E+12

0.00

0.000E+00

9.480E+12

0.00

6.000E+03

3.160E+11

0.00

1.950E+04

Rev /

48

IC8H17 + O2

IC8H16 + HO2

Rev /

49

IC8H16 + O2

=>

C6H13 + CH2O + HCO

3.160E+13

0.00

1.000E+04

50

IC8H18 + HO2

IC8H17 + H2O2

1.000E+13

0.00

1.695E+04

51

IC8H17

=>

C6H13 + C2H4

3.617E+17

-1.27

2.970E+04

52

C6H13

C3H7 + C3H6

7.204E+13

-0.03

2.790E+04

...

参考文献をもっと見る