リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「PUFF Model Prediction of Volcanic Ash Plume Dispersal for Sakurajima Using MP Radar Observation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

PUFF Model Prediction of Volcanic Ash Plume Dispersal for Sakurajima Using MP Radar Observation

田中, 博 Nakamichi, Haruhisa Iguchi, Masato 筑波大学

2022.02.08

概要

In this study, a real-time volcanic ash plume prediction by the PUFF system was applied to the Sakurajima volcano (which erupted at 17:24 Japan Standard Time (JST) on 8 November 2019), using the direct observation of the multi-parameter (MP) radar data installed at the Sakurajima Volcano Research Center. The MP radar showed a plume height of 5500 m a.s.l. around the volcano. The height was higher than the 4000 m by the PUFF system, but was lower than the observational report of 6500 m by the Japan Meteorological Agency in Kagoshima. In this study, ash particles by the MP radar observation were assimilated to the running PUFF system operated by the real-time emission rate and plume height, since the radar provides accurate plume height. According to the simulation results, the model prediction has been improved in the shape of the ash cloud with accurate plume top by the new MP radar observation. The plume top is corrected from 4000 m to 5500 m a.s.l., and the three-dimensional (3D) ash dispersal agrees with the observation. It was demonstrated by this study that the direct observation of MP radar obviously improved the model prediction, and enhanced the reliability of the prediction model.

参考文献

1. Tanaka, H.L. Development of a prediction scheme for the volcanic ash fall from Redoubt volcano. In Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety; U.S. Geological Survey: Reston, VA, USA, 1991; Volume 1065, p. 58.

2. Heffter, J.L.; Stunder, B.J.B. Volcanic ash forecast transport and dispersion (VAFTAD) model. Comput. Tech. 1993, 8, 533–541. [CrossRef]

3. Bonadonna, C.; Connor, C.B.; Houghton, B.F.; Connor, L.; Byrne, M.; Laing, A. Probabilistic modeling of tephra-fall dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J. Geophys. Res. 2005, 110, B03203. [CrossRef]

4. Schwaiger, H.F.; Denlinger, R.P.; Mastin, L.G. Ash3d: A finite-volume, conservative numerical model for ash transport and tephra deposition. J. Geophys. Res. 2012, 117, B4. [CrossRef]

5. Tanaka, H.L. Development of a prediction scheme for volcanic ash fall from Redoubt volcano, Alaska. In Proceedings of the First International Symposium on Volcanic Ash and Aviation Safety; U.S. Geological Survey: Reston, VA, USA, 1994; Volume 2047, pp. 283–291.

6. Searcy, C.; Dean, K.G.; Stringer, B. PUFF: A volcanic ash tracking and prediction model. J. Volc. Geophys. Res. 1998, 80, 1–16.

7. Kienle, J.; Woods, A.W.; Estes, S.A.; Ahlnaes, K.; Dean, K.G.; Tanaka, H.L. Satellite and slow-scan television observations of the rise and dispersion of ash-rich eruption clouds from Redoubt volcano, Alaska. EOS 1991, 72, 748–750.

8. Dean, K.G.; Akasofu, S.-I.; Tanaka, H.L. Volcanic hazards and aviation safety: Developing techniques in Alaska. FAA Aviat. Saf. J. 1993, 3, 11–15.

9. Tanaka, H.L.; Dean, K.G.; Akasofu, S.-I. Predicting the movement of volcanic ash clouds. EOS 1993, 74, 231.

10. Akasofu, S.-I.; Tanaka, H.L. Urgent issue of developing volcanic ash tracking model. Kagaku Asahi 1993, 5, 121–124. (In Japanese)

11. Tanaka, H.L.; Yamamoto, K. Numerical simulations of volcanic plume dispersal from Usu volcano in Japan on 31 March 2000. Earth Planets Space 2002, 54, 743–752. [CrossRef]

12. Tanaka, H.L.; Iguchi, M.; Nakata, S. Numerical simulations of volcanic ash plume dispersal from Kelud volcano in Indonesia on 13 February 2014. J. Disaster Res. 2016, 11, 31–42. [CrossRef]

13. Tanaka, H.L.; Iguchi, M. Numerical simulations of volcanic ash plume dispersal from Kuchinoerabujima volcano on 29 May 2015. Nat. Disaster Sci. 2016, 37, 79–90. [CrossRef]

14. Iguchi, M. Prediction of volume of volcanic ash ejected from Showa crater of Sakurajima volcano, Japan. Disaster Prevention Research Institute. Annu. Rep. B Univ. Kyoto 2012, 55, 169–175.

15. Iguchi, M. Method for real-time evaluation of discharge rate of volcanic ash: Case study on intermittent eruptions at the Sakurajima volcano, Japan. J. Disaster Res. 2016, 11, 4–14. [CrossRef]

16. Tanaka, H.L.; Iguchi, M. Numerical simulations of volcanic ash plume dispersal for Sakura-Jima using real-time emission rate estimation. J. Disaster Res. 2019, 14, 160–172. [CrossRef]

17. Maki, M.; Iguchi, M.; Maesaka, T.; Miwa, T.; Tanada, T.; Kozono, T.; Momotani, T.; Yamaji, A.; Kakimoto, I. Preliminary result of weather radar observations of Sakurajima volcanic smoke. J. Disaster Res. 2016, 11, 15–30. [CrossRef]

18. Nakamichi, H.; Iguchi, M.; Shimomura, M.; Takenaka, Y. Deployment of small-size X-band multi-parameter radars near volcanoes in southern Kyushu, Japan and observation of eruption plumes. Disaster Prev. Res. Inst. Annu. 2018, 61, 337–343.

19. Chatfield, C. The Analysis of Time Series: An Introduction; Chapman and Hall: London, UK, 1984; p. 286.

20. Wessel, P.; Smith, W.H.F.; Scharroo, R.; Luis, J.F.; Wobbe, F. Generic Mapping Tools: Improved Version Released. EOS Trans AGU 1998, 94, 409–410. [CrossRef]

21. Sparks, R.; Bursik, M.; Carey, S.; Gilbert, J.; Glaze, L.; Sigurdsson, H.; Woods, A. Volcanic Plumes; John Wiley: Hoboken, NJ, USA, 1997.

22. Japan Meteorological Agency (JMA). Available online: http://www.data.jma.go.jp/svd/vois/data/kouhai/ (accessed on 13 October 2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る