リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「高濃度リチウム塩を含有するポリフッ化ビニリデン系ゲル電解質の物理化学特性とリチウム二次電池への応用」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

高濃度リチウム塩を含有するポリフッ化ビニリデン系ゲル電解質の物理化学特性とリチウム二次電池への応用

玉 智英 横浜国立大学 DOI:info:doi/10.18880/00014098

2021.11.24

概要

Rechargeable Lithium-ion batteries (LIB) have been extensively studied worldwide in recent decades to achieve the required energy demand. The classic LIBs are comprised of a transition-metal oxide cathode, carbon anode, and a nonaqueous electrolyte. Liquid electrolytes were found to have high ionic conductivity but inherently possess some disadvantages such as flammability, leakage and volatility problems. One of solutions to solve the safety issue with organic liquid electrolytes is using ionic liquids, which has low volatility, non- flammability and wide electrochemical window. Moreover, ionic liquids could be combined with polymer gel matrix and electrochemical properties can be controlled by molecular designing of the ionic liquid.

In this study, gel electrolytes composed of 30 wt% poly(vinylidene fluoride–co– hexafluoropropylene) (PVDF–HFP) and 70 wt% highly concentrated sulfolane (SL)-based electrolytes were prepared. It has been reported that Li ion hopping mechanism emerges in highly concentrated SL-based electrolytes, resulting in high Li ion conducting property with high thermal stability. By blending highly concentrated electrolytes and PVDF–HFP polymer network together, a flexible gel-type electrolyte having a high Li ion conducting ability were also prepared. The anionic effect of the SL-based gel electrolytes on the Li ion conductivity and charge transfer kinetics at the gel/electrode interface was studied. It is demonstrated that Li ion transport properties of gel electrolytes contribute to the Li/LiCoO2 batteries, especially under high discharge current density where Li ions were involved in the severe electrochemical reaction at the electrode/electrolyte interface.

In addition, a flexible composite electrolyte was also prepared by combining NASICON (Sodium superionic conductor) type Li1.5Al0.5Ti1.5(PO4)3 (LATP) oxide fillers and the gel electrolyte of [Li(SL)2][TFSA] through a solution casting method. Replace the conventional liquid electrolytes into inorganic solid electrolytes is one way to settle the safety problem of lithium batteries. However, brittle and fragile nature of solid materials, which make the poor physical contact, are considered to be the origins of interfacial resistance at the electrode/electrolyte. To address these issues at the interfaces, many efforts have been devoted to prepare composite electrolytes combining inorganic solid electrolytes with polymer electrolytes. It was investigated the properties of the composite electrolytes composed of LATP and PVDF–HFP-gel such as mechanical properties, ion transport properties, electrochemical properties.

この論文で使われている画像

参考文献

1 M. S. Whittingham, Science , 1976, 192, 1126–1127.

2 K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Mater. Res. Bull., 1980, 15, 783–789.

3 A. Yoshino, K. Sanechika and T. Nakajima, US Pat.4,668,595, 1985

4 A. Yoshino, Angew. Chemie - Int. Ed., 2012, 51, 5798–5800.

5 X. Cheng, R. Zhang, C. Zhao and Q. Zhang, Chem. Rev., 2017, 117, 10403–10473.

6 T. Krauskopf, H. Hartmann, W. G. Zeier and J. Janek, ACS Appl. Mater. Interfaces, 2019, 11, 14463–14477.

7 D. Lin, Y. Liu and Y. Cui, Nat. Nanotechnol., 2017, 12, 194–206.

8 B. Nykvist and M. Nilsson, 2015, 5, 329–332.

9 A. Opitz, P. Badami, L. Shen, K. Vignarooban and A. M. Kannan, Renew. Sustain. Energy Rev., 2017, 68, 685–692.

10 A. M. Andwari, A. Pesiridis, S. Rajoo, R. Martinez- and V. Esfahanian, Renew. Sustain. Energy Rev., 2017, 78, 414–430.

11 Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba and R. Kanno, Nat. Energy, 2016, 1, 1–7.

12 N. Nitta, F. Wu, J. T. Lee and G. Yushin, Mater. Today, 2015, 18, 252– 264.

13 G. E. Blomgren, J. Electrochem. Soc., 2017, 164, A5019–A5025.

14 A. Manthiram, ACS Cent. Sci., 2017, 3, 1063–1069.

15 V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 2011, 4, 3243–3262.

16 J. B. Goodenough, Nat. Electron., 2018, 1, 204–204.

17 D. Aurbach, J. Power Sources, 2000, 89, 206–218.

18 D. Aurbach, Y. Talyosef, B. Markovsky, E. Markevich, E. Zinigrad, L. Asraf, J. S. Gnanaraj and H. Kim, Electrochim. Acta, 2004, 50, 247–254.

19 K. Xu, Chem. Rev., 2004, 104, 4303–4418.

20 K. Xu, Chem. Rev., 2014, 114, 11503–11618.

21 M. Watanabe, M. L. Thomas, S. Zhang, K. Ueno, T. Yasuda and K. Dokko, 2017, 117, 7190–7239.

22 Y. Yamada, M. Yaegashi, T. Abe and A. Yamada, Chem. Commun., 2013, 49, 11194–11196.

23 Y. Yamada and A. Yamada, J. Electrochem. Soc., 2015, 162, A2406– A2423.

24 Y. Yamada, Y. Takazawa, K. Miyazaki and T. Abe, J. Phys. Chem. C, 2010, 114, 11680–11685.

25 Y. Yamada, K. Usui, C. H. Chiang, K. Kikuchi, K. Furukawa and A. Yamada, ACS Appl. Mater. Interfaces, 2014, 6, 10892–10899.

26 R. Hayes, G. G. Warr and R. Atkin, Chem. Rev., 2015, 115, 6357–6426.

27 K. Dokko, D. Watanabe, Y. Ugata, M. L. Thomas, S. Tsuzuki, W. Shinoda, K. Hashimoto, K. Ueno, Y. Umebayashi and M. Watanabe, J. Phys. Chem. B, 2018, 122, 10736–10745.

28 A. Nakanishi, K. Ueno, D. Watanabe, Y. Ugata, Y. Matsumae, J. Liu, M. L. Thomas, K. Dokko and M. Watanabe, J. Phys. Chem. C, 2019, 123, 14229–14238.

29 X. Sun and C. A. Angell, Electrochem. commun., 2005, 7, 261–266.

30 A. Abouimrane, I. Belharouak and K. Amine, Electrochem. commun., 2009, 11, 1073–1076.

31 Y. Ugata, R. Tatara, T. Mandai, K. Ueno, M. Watanabe and K. Dokko, ACS Appl. Energy Mater., 2021, 4, 1851–1859.

32 Y.-S. Hu, Nat. Energy, 2016, 1, 1–2.

33 H. Y. Hong, Mater. Res. Bull., 1978, 13, 117–124.

34 U. V Alpen, M. F. Bell, W. Wichelhaus, K. Y. Cheung and G. J. Dudley, Electrochim. Acta, 1976, 23, 1395–1397.

35 H. Oguchi, M. Matsuo, T. Sato, H. Takamura, H. Maekawa, H. Kuwano and S. Orimo, J. Appl. Phys., 2010, 107, 096104.

36 H. D. Lutz, P. Kuske and K. Wussow, Solid State ionics, 1988, 28–30, 1282–1286.

37 A. R. Rodger, J. Kuwano and A. R. West, Solid State Ionics, 1985, 15, 185–198.

38 H. Deiseroth, S. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiß and M. Schlosser, Angew. Chemie - Int. Ed., 2008, 47, 755–758.

39 M. Brinek, C. Hiebl and H. M. R. Wilkening, Chem. Mater., 2020, 32, 4754–4766.

40 V. Thangadurai, S. Narayanan and D. Pinzaru, Chem. Soc. Rev., 2014, 43, 4714–4727.

41 K. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S. D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman and L. Hu, Sci. Adv., 2017, 3, 1–12.

42 A. Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama, A. Sakuda and M. Tatsumisago, Nat. Commun., 2019, 10, 1–6.

43 A. Martínez-Juárez, C. Pecharroma, J. E. Iglesias and M. J. Rojo, J. Phys. Chem. B, 1998, 102, 372–375.

44 T. Lapp, S. Skaarup and A. Hooper, Solid State Ionics, 1983, 11, 97–103.

45 N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato, S. Hama, K. Kawamoto and A. Mitsui, Nat. Mater., 2011, 10, 2–6.

46 J. C. Bachman, S. Muy, A. Grimaud, H. H. Chang, N. Pour, S. F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano and Y. Shao-Horn, Chem. Rev., 2016, 116, 140–162.

47 H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama and M. Tatsumisago, Solid State Ionics, 2011, 182, 116–119.

48 G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney and C. Liang, Energy Environ. Sci., 2014, 7, 1053–1058.

49 Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y. bing He, F. Kang and B. Li, J. Power Sources, 2018, 389, 120–134.

50 E. C. Bucharsky, K. G. Schell, A. Hintennach and M. J. Hoffmann, Solid State Ionics, 2015, 274, 77–82.

51 H. Nakano, K. Dokko, M. Hara, Y. Isshiki and K. Kanamura, Ionics, 2008, 14, 173–177.

52 P. Hartmann, T. Leichtweiss, M. R. Busche, M. Schneider, M. Reich, J. Sann, P. Adelhelm and J. Janek, J. Phys. Chem. C, 2013, 117, 21064– 21074.

53 Y. Zhu, X. He and Y. Mo, ACS Appl. Mater. Interfaces, 2015, 7, 23685– 23693.

54 S. Wenzel, T. Leichtweiss, D. Krüger, J. Sann and J. Janek, Solid State Ionics, 2015, 278, 98–105.

55 R. D. Armstrong and R. A. Burnham, J. Electroanal. Chem., 1976, 72, 257–266.

56 H.-K. Tian and Y. Qi, J. Electrochem. Soc., 2017, 164, E3512–E3521.

57 Y. Zhu, X. He and Y. Mo, ACS Appl. Mater. Interfaces, 2015, 7, 23685– 23693.

58 W. D. Richards, L. J. Miara, Y. Wang, J. C. Kim and G. Ceder, Chem. Mater., 2016, 28, 266–273.

59 J. Janek and W. G. Zeier, Nat. Energy, 2016, 1, 1–4.

60 P. Directorate and W. A. F. Base, J. Power Sources, 1994, 52, 261–268.

61 S. Ali, C. Tan, M. Waqas, W. Lv, Z. Wei, S. Wu, B. Boateng, J. Liu, J. Ahmed, J. Xiong, J. B. Goodenough and W. He, Adv. Mater. Interfaces, 2018, 5, 1–10.

62 T. Yang, J. Zheng, Q. Cheng, Y. Y. Hu and C. K. Chan, ACS Appl. Mater. Interfaces, 2017, 9, 21773–21780.

63 L. Chen, Y. Li, S. P. Li, L. Z. Fan, C. W. Nan and J. B. Goodenough, Nano Energy, 2018, 46, 176–184.

64 S. Yu, Q. Xu, C. Tsai, M. Ho, X. Lu, Q. Ma, H. Tempel, H. Kungl, H. Wiemho and R. Eichel, ACS Appl. Mater. Interfaces, 2020, 12, 37067- 37078.

65 M. Keller, A. Varzi and S. Passerini, J. Power Sources, 2018, 392, 206– 225.

66 M. Wirtz, H. Kungl, H. Tempel, P. Veelken, M. Linhorst, B. M. Moerschbacher and R. Eichel, 2020, 1–10.

67 N. Boaretto, L. Meabe, M. Martinez-ibañez, M. Armand and H. Zhang, J. Electrochem. Soc., 2020, 167, 070524.

68 J. B. Goodenough and P. Singh, J. Electrochem. Soc., 2015, 162, A2387– A2392.

69 M. Keller, A. Varzi and S. Passerini, J. Power Sources, 2018, 392, 206– 225.

70 T. Zhang, W. He, W. Zhang, T. Wang, P. Li, Z. Sun and X. Yu, Chem. Sci., 2020, 11, 8686–8707.

71 E. A. Rietman, M. L. Kaplan and R. J. Cava, Solid State Ionics, 1987, 25, 41–44.

72 Z. Chen, P. A. Fitzgerald, G. G. Warr and R. Atkin, Phys. Chem. Chem. Phys., 2015, 17, 14872–14878.

73 W. Wang, E. Yi, A. J. Fici, R. M. Laine and J. Kieffer, J. Phys. Chem. C, 2017, 121, 2563–2573.

74 C. W. Lin, C. L. Hung, M. Venkateswarlu and B. J. Hwang, J. Power Sources, 2005, 146, 397–401.

75 S. Das and A. Ghosh, AIP. Conf. Proc., 2016, 1731, 110012.

76 Y. Li, B. Xu, H. Xu, H. Duan, X. Lü, S. Xin, W. Zhou, L. Xue, G. Fu, A. Manthiram and J. B. Goodenough, Angew. Chemie - Int. Ed., 2017, 56, 753–756.

77 W. Liu, N. Liu, J. Sun, P. Hsu, Y. Li, H. Lee and Y. Cui, Nano Lett., 2015, 2740–2745.

78 J. Zheng and Y. Y. Hu, ACS Appl. Mater. Interfaces, 2018, 10, 4113–4120.

79 J. Zheng, M. Tang and Y. Y. Hu, Angew. Chemie - Int. Ed., 2016, 55, 12538–12542.

80 J. Zheng, P. Wang, H. Liu and Y. Y. Hu, ACS Appl. Energy Mater., 2019, 2, 1452–1459.

81 J. Zheng, H. Dang, X. Feng, P. H. Chien and Y. Y. Hu, J. Mater. Chem. A, 2017, 5, 18457–18463.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る