リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Role of Corticosterone in Lipid Metabolism in Broiler Chick White Adipose Tissue」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Role of Corticosterone in Lipid Metabolism in Broiler Chick White Adipose Tissue

Honda, Kazuhisa Kurachi, Kiyotaka Takagi, Shoko Saneyasu, Takaoki Kamisoyama, Hiroshi 神戸大学

2022

概要

Excessive accumulation of body fat in broiler chickens has become a serious problem in the poultry industry. However, the molecular mechanism of triglyceride accumulation in chicken white adipose tissue (WAT) has not been elucidated. In the present study, we investigated the physiological importance of the catabolic hormone corticosterone, the major glucocorticoid in chickens, in the regulation of chicken WAT lipid metabolism. We first examined the effects of fasting on the mRNA levels of lipid metabolism-related genes associated with WAT, plasma corticosterone, and non-esterified fatty acid (NEFA). We then examined the effects of corticosterone on the expression of these genes in vivo and in vitro. In 10-day-old chicks, 3 h of fasting significantly decreased mRNA levels of lipoprotein lipase (LPL) in WAT and significantly elevated plasma concentrations of NEFA. Six hours of fasting significantly increased mRNA levels of adipose triglyceride lipase (ATGL) in WAT and significantly elevated plasma concentrations of corticosterone. On the other hand, fasting significantly reduced mRNA levels of LPL in WAT and elevated plasma concentrations of NEFA in 29-day-old chicks without affecting mRNA levels of ATGL in WAT or plasma corticosterone concentrations. Oral administration of corticosterone significantly reduced mRNA levels of LPL and significantly increased the mRNA levels of ATGL in WAT in 29-day-old chicks without affecting plasma NEFA concentrations. The addition of corticosterone to primary chicken adipocytes significantly increased mRNA levels of ATGL, whereas mRNA levels of LPL tended to decrease. NEFA concentrations in the culture medium were not influenced by corticosterone levels. These results suggest that plasma corticosterone partly regulates the gene expression of lipid metabolism-related genes in chicken WAT and this regulation is different from the acute elevation of plasma NEFA due to short-term fasting.

この論文で使われている画像

参考文献

Alvarenga RR, Zangeronimo MG, Pereira LJ, Rodrigues PB and

Gomide EM. Lipoprotein metabolism in poultry. Worldʼs Poultry Science Journal, 67: 431-440. 2011.

Anthonsen MW, Degerman E and Holm C. Partial purification and

identification of hormone-sensitive lipase from chicken adipose

tissue. Biochemical and Biophysical Research Communications,

236: 94-99. 1997.

Bai S, Wang G, Zhang W, Zhang S, Rice BB, Cline MA and Gilbert

ER. Broiler chicken adipose tissue dynamics during the first

two weeks post-hatch. Comparative Biochemistry and Physiology Part A, Molecular and Integrative Physiology, 189: 115123. 2015.

Bergen WG and Mersmann HJ. Comparative aspects of lipid metabolism: impact on contemporary research and use of animal

models. Journal of Nutrition, 135: 2499-2502. 2005.

Bezaire V, Mairal A, Ribet C, Lefort C, Girousse A, Jocken J,

Laurencikiene J, Anesia R, Rodriguez AM, Ryden M, Stenson

BM, Dani C, Ailhaud G, Arner P and Langin D. Contribution of

adipose triglyceride lipase and hormone-sensitive lipase to

lipolysis in hMADS adipocytes. Journal of Biological Chemistry, 284: 18282-18291. 2009.

Christensen K, McMutry JP, Thaxton YV, Thaxton JP, Corzo A,

Mcdaniel C and Scanes CG. Metabolic and hormonal responses

of growing modern meat-type chickens to fasting. British Poultry Science, 54: 199-205. 2013.

Decuypere E, Darras VM, Vermijlen K and Kühn ER. Developmental

changes in the corticosterone response to corticotrophin and in

the adrenal corticosterone content of rapid and slow growing

strains of chickens (Gallus domesticus). British Poultry Science,

30: 699-709. 1989.

Delezie E, Swennen Q, Buyse J and Decuypere E. The effect of feed

withdrawal and crating density in transit on metabolism and

meat quality of broilers at slaughter weight. Poultry Science, 86:

1414-1423. 2007.

Dupont J, Métayer-Coustard S, Ji B, Ramé C, Gespach C, Voy B and

Simon J. Characterization of major elements of insulin signaling cascade in chicken adipose tissue: apparent insulin refractoriness. General and Comparative Endocrinology, 176: 86-93.

2012.

Dupont J, Tesseraud S, Derouet M, Collin A, Rideau N, Crochet S,

Godet E, Cailleau-Audouin E, Métayer-Coustard S, Duclos MJ,

Gespach C, Porter TE, Cogburn LA, Simon J. Insulin immunoneutralization in chicken: effects on insulin signaling and gene

expression in liver and muscle. Journal of Endocrinology, 197:

531-542. 2008.

Griffin HD, Butterwith SC and Goddard C. Contribution of lipoprotein lipase to differences in fatness between broiler and

layer-strain chickens. British Poultry Science, 28: 197-206.

1987.

Geris KL, Berghman LR, Kühn ER and Darras VM. The drop in

plasma thyrotropin concentrations in fasted chickens is caused

by an action at the level of the hypothalamus: role of corti-

158

Journal of Poultry Science, 59 (2)

costerone. Domestic Animal Endocrinology, 16: 231-237. 1999.

Hassanzadeh M, Fard MH, Buyse J, Bruggeman V and Decuypere E.

Effect of chronic hypoxia during embryonic development on

physiological functioning and on hatching and post-hatching

parameters related to ascites syndrome in broiler chickens.

Avian Pathology, 33: 558-64. 2004.

Honda K, Takagi S, Kurachi K, Sugimoto H, Saneyasu T and

Kamisoyama H. Fasting and glucagon stimulate gene expression

of pyruvate dehydrogenase kinase 4 in chicks. Journal Poultry

Science, 54: 292-295. 2017.

Ji B, Ernest B, Gooding JR, Das S, Saxton AM, Simon J, Dupont J,

Métayer-Coustard S, Campagna SR and Voy BH. Transcriptomic

and metabolomic profiling of chicken adipose tissue in response

to insulin neutralization and fasting. BMC Genomics, 13: 441.

2012.

Julian RJ. Production and growth related disorders and other

metabolic diseases of poultry - A review. Veterinary Journal,

169: 350-369. 2005.

Kadhim HJ, Kang SW and Kuenzel WJ. Differential and temporal

expression of corticotropin releasing hormone and its receptors

in the nucleus of the hippocampal commissure and paraventricular nucleus during the stress response in chickens (Gallus

gallus). Brain Research, 1714: 1-7. 2019.

Kalliecharan R. The influence of exogenous ACTH on the levels of

corticosterone and cortisol in the plasma of young chicks

(Gallus domesticus). General and Comparative Endocrinology,

44: 249-251. 1981.

Kim DH, Lee J, Suh Y, Cressman M, Lee SS and Lee K. Adipogenic

and myogenic potentials of chicken embryonic fibroblasts in

vitro: combination of fatty acids and insulin induces adipogenesis. Lipids, 55: 163-171. 2020.

Lass A, Zimmermann R, Haemmerle G, Riederer M, Schoiswohl G,

Schweiger M, Kienesberger P, Strauss JG, Gorkiewicz G and

Zechner R. Adipose triglyceride lipase-mediated lipolysis of

cellular fat stores is activated by CGI-58 and defective in

Chanarin-Dorfman Syndrome. Cell Metabolism, 3: 309-319.

2006.

Lee MJ, Pramyothin P, Karastergiou K and Fried SK. Deconstructing

the roles of glucocorticoids in adipose tissue biology and the

development of central obesity. Biochimica et Biophysica Acta,

1842: 473-481. 2014.

Lee K, Shin J, Latshaw JD, Suh Y and Serr J. Cloning of adipose

triglyceride lipase complementary deoxyribonucleic acid in

poultry and expression of adipose triglyceride lipase during

development of adipose in chickens. Poultry Science, 88: 620630. 2009.

Nakamura MT, Yudell BE and Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Progress in Lipid Research, 53:

124-144. 2014.

Nijdam E, Zailan AR, van Eck JH, Decuypere E and Stegeman JA.

Pathological features in dead on arrival broilers with special

reference to heart disorders. Poultry Science, 85: 1303-1308.

2006.

Oscar TP. Glucagon-stimulated lipolysis of primary cultured broiler

adipocyte. Poultry Science, 70: 326-332. 1991.

Santoro A, McGraw TE and Kahn BB. Insulin action in adipocytes,

adipose remodeling, and systemic effects. Cell Metabolism, 33:

748-757. 2021.

Saneyasu T, Nakanishi K, Atsuta H, Ikura A, Hasegawa S,

Kamisoyama H and Honda K. Age-dependent changes in the

mRNA levels of neuropeptide Y, proopiomelanocortin, and

corticotropin-releasing factor in the hypothalamus in growing

broiler chicks. Journal of Poultry Science, 50: 364-369, 2013a.

Saneyasu T, Shiragaki M, Nakanishi K, Kamisoyama H and Honda

K. Effects of short term fasting on the expression of genes

involved in lipid metabolism in chicks, Comparative Biochemistry and Physiology Part B Biochemistry & Molecular Biology,

165: 114-118. 2013b.

Sato K, Akiba Y, Chida Y and Takahashi K. Lipoprotein hydrolysis

and fat accumulation in chicken adipose tissues are reduced by

chronic administration of lipoprotein lipase monoclonal antibodies. Poultry Science, 78: 1286-1291. 1999.

Scanes CG. Perspectives on the endocrinology of poultry growth and

metabolism. General and Comparative Endocrinology, 163: 2432. 2009.

Schweiger M, Schoiswohl G, Lass A, Radner FP, Haemmerle G,

Malli R, Graier W, Cornaciu I, Oberer M, Salvayre R, Fischer J,

Zechner R and Zimmermann R. The C-terminal region of

human adipose triglyceride lipase affects enzyme activity and

lipid droplet binding. Journal of Biological Chemistry, 283:

17211-17220. 2008.

Schweiger M, Schreiber R, Haemmerle G, Lass A, Fledelius C,

Jacobsen P, Tornqvist H, Zechner R and Zimmermann R.

Adipose triglyceride lipase and hormone-sensitive lipase are the

major enzymes in adipose tissue triacylglycerol catabolism.

Journal of Biological Chemistry, 281: 40236-40241. 2006.

Serr J, Suh Y and Lee K. Cloning of comparative gene identification-58

gene in avian species and investigation of its developmental and

nutritional regulation in chicken adipose tissue. Journal of

Animal Science, 89: 3490-3500. 2011a.

Serr J, Suh Y, Oh SA, Shin S, Kim M, Latshaw JD and Lee K. Acute

up-regulation of adipose triglyceride lipase and release of nonesterified fatty acids by dexamethasone in chicken adipose

tissue. Lipids, 46: 813-820. 2011b.

Wang G, McConn BR, Liu D, Cline MA and Gilbert ER. The effects

of dietary macronutrient composition on lipid metabolismassociated factor gene expression in the adipose tissue of

chickens are influenced by fasting and refeeding. BMC Obesity,

4: 14. 2017.

Zimmermann R, Lass A, Haemmerle G, and Zechner R. 2009. Fate

of fat: the role of adipose triglyceride lipase in lipolysis. Biochimica et Biophysica Acta, 1791: 494-500. 2009.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る