リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fluorescence-microscopy-based assay assessing regulatory mechanisms of global genome nucleotide excision repair in cultured cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fluorescence-microscopy-based assay assessing regulatory mechanisms of global genome nucleotide excision repair in cultured cells

Kusakabe, Masayuki 日下部, 将之 クサカベ, マサユキ Sugasawa, Kaoru 神戸大学

2023.09.15

概要

It remains uncertain how global genome nucleotide excision repair (GG-NER) efficiently removes various helix distorting DNA lesions in the cell nucleus. Here, we present a protocol to assess the contribution of factors of interest to GG-NER using two types of fluorescence-microscopy-based techniques. First, we describe steps for analyzing the localization of the factors upon local ultraviolet (UV) irradiation. We then detail the second technique, which quantifies the removal of UV-induced photolesions combined with lesion-specific antibodies and program-based image analysis. For complete details on the use and execution of this protocol, please refer to Kusakabe et al.1

この論文で使われている画像

参考文献

6. Adam, S., Polo, S.E., and Almouzni, G. (2013).

Transcription recovery after DNA damage

requires chromatin priming by the H3.3 histone

chaperone HIRA. Cell 155, 94–106. https://doi.

org/10.1016/j.cell.2013.08.029.

1. Kusakabe, M., Kakumu, E., Kurihara, F.,

Tsuchida, K., Maeda, T., Tada, H., Kusao, K.,

Kato, A., Yasuda, T., Matsuda, T., et al. (2022).

Histone deacetylation regulates nucleotide

excision repair through an interaction with the

XPC protein. iScience 25, 104040. https://doi.

org/10.1016/j.isci.2022.104040.

7. Piquet, S., Le Parc, F., Bai, S.-K., Chevallier, O.,

Adam, S., and Polo, S.E. (2018). The histone

chaperone FACT coordinates H2A.Xdependent signaling and repair of DNA

damage. Mol. Cell 72, 888–901.e7. https://doi.

org/10.1016/j.molcel.2018.09.010.

2. Scha¨rer, O.D. (2013). Nucleotide excision

repair in eukaryotes. Cold Spring Harb.

Perspect. Biol. 5, a012609. https://doi.org/10.

1101/cshperspect.a012609.

8. Kakumu, E., Nakanishi, S., Shiratori, H.M., Kato,

A., Kobayashi, W., Machida, S., Yasuda, T.,

Adachi, N., Saito, N., Ikura, T., et al. (2017).

Xeroderma pigmentosum group C protein

interacts with histones: regulation by

acetylated states of histone H3. Gene Cell. 22,

310–327. https://doi.org/10.1111/gtc.12479.

3. Sugasawa, K., Ng, J.M., Masutani, C., Iwai, S.,

van der Spek, P.J., Eker, A.P., Hanaoka, F.,

Bootsma, D., and Hoeijmakers, J.H. (1998).

Xeroderma pigmentosum group C protein

complex is the initiator of global genome

nucleotide excision repair. Mol. Cell 2,

223–232. https://doi.org/10.1016/s10972765(00)80132-x.

4. Volker, M., Mone´, M.J., Karmakar, P., van

Hoffen, A., Schul, W., Vermeulen, W.,

Hoeijmakers, J.H., van Driel, R., van

Zeeland, A.A., and Mullenders, L.H. (2001).

Sequential assembly of the nucleotide

excision repair factors in vivo. Mol. Cell 8,

213–224. https://doi.org/10.1016/s10972765(01)00281-7.

5. van Toorn, M., Turkyilmaz, Y., Han, S., Zhou, D.,

Kim, H.-S., Salas-Armenteros, I., Kim, M., Akita,

M., Wienholz, F., Raams, A., et al. (2022). Active

DNA damage eviction by HLTF stimulates

nucleotide excision repair. Mol. Cell 82, 1343–

1358.e8. https://doi.org/10.1016/j.molcel.

2022.02.020.

26

9. Dinant, C., de Jager, M., Essers, J., van

Cappellen, W.A., Kanaar, R., Houtsmuller, A.B.,

and Vermeulen, W. (2007). Activation of

multiple DNA repair pathways by sub-nuclear

damage induction methods. J. Cell Sci. 120,

2731–2740. https://doi.org/10.1242/jcs.

004523.

10. Kusakabe, M., Onishi, Y., Tada, H., Kurihara, F.,

Kusao, K., Furukawa, M., Iwai, S., Yokoi, M.,

Sakai, W., and Sugasawa, K. (2019). Mechanism

and regulation of DNA damage recognition in

nucleotide excision repair. Genes Environ. 41,

2. https://doi.org/10.1186/s41021-019-0119-6.

11. Ory, D.S., Neugeboren, B.A., and Mulligan,

R.C. (1996). A stable human-derived packaging

cell line for production of high titer retrovirus/

STAR Protocols 4, 102378, September 15, 2023

vesicular stomatitis virus G pseudotypes. Proc.

Natl. Acad. Sci. USA 93, 11400–11406. https://

doi.org/10.1073/pnas.93.21.11400.

12. Akita, M., Tak, Y.-S., Shimura, T., Matsumoto,

S., Okuda-Shimizu, Y., Shimizu, Y., Nishi, R.,

Saitoh, H., Iwai, S., Mori, T., et al. (2015).

SUMOylation of xeroderma pigmentosum

group C protein regulates DNA damage

recognition during nucleotide excision repair.

Sci. Rep. 5, 10984. https://doi.org/10.1038/

srep10984.

13. Sakai, W., Yuasa-Sunagawa, M., Kusakabe, M.,

Kishimoto, A., Matsui, T., Kaneko, Y., Akagi,

J.-I., Huyghe, N., Ikura, M., Ikura, T., et al.

(2020). Functional impacts of the ubiquitinproteasome system on DNA damage

recognition in global genome nucleotide

excision repair. Sci. Rep. 10, 19704. https://doi.

org/10.1038/s41598-020-76898-2.

14. Schindelin, J., Arganda-Carreras, I., Frise, E.,

Kaynig, V., Longair, M., Pietzsch, T., Preibisch,

S., Rueden, C., Saalfeld, S., Schmid, B., et al.

(2012). Fiji: an open-source platform for

biological-image analysis. Nat. Methods 9,

676–682. https://doi.org/10.1038/nmeth.2019.

15. van der Meer, P.J., Van Den Heuvel, D., and

Luijsterburg, M.S. (2023). Unscheduled DNA

synthesis at sites of local UV-induced DNA

damage to quantify global genome nucleotide

excision repair activity in human cells. Bio.

Protoc. 13, e4609. https://doi.org/10.21769/

BioProtoc.4609.

16. Katsumi, S., Kobayashi, N., Imoto, K.,

Nakagawa, A., Yamashina, Y., Muramatsu, T.,

ll

Protocol

Shirai, T., Miyagawa, S., Sugiura, S., Hanaoka,

F., et al. (2001). In situ visualization of

ultraviolet-light-induced DNA damage repair

in locally irradiated human fibroblasts. J. Invest.

Dermatol. 117, 1156–1161. https://doi.org/10.

1046/j.0022-202x.2001.01540.x.

OPEN ACCESS

Goodman, A. (2021). CellProfiler 4:

improvements in speed, utility and usability.

BMC Bioinf. 22, 433. https://doi.org/10.1186/

s12859-021-04344-9.

17. Kimura, H., Hayashi-Takanaka, Y., Goto, Y.,

Takizawa, N., and Nozaki, N. (2008). The

organization of histone H3 modifications as

revealed by a panel of specific monoclonal

antibodies. Cell Struct. Funct. 33, 61–73.

https://doi.org/10.1247/csf.07035.

19. Nakagawa, A., Kobayashi, N., Muramatsu, T.,

Yamashina, Y., Shirai, T., Hashimoto, M.W.,

Ikenaga, M., and Mori, T. (1998). Threedimensional visualization of ultraviolet-induced

DNA damage and its repair in human cell

nuclei. J. Invest. Dermatol. 110, 143–148.

https://doi.org/10.1046/j.1523-1747.1998.

00100.x.

18. Stirling, D.R., Swain-Bowden, M.J., Lucas,

A.M., Carpenter, A.E., Cimini, B.A., and

20. Hanawalt, P.C. (1989). Preferential repair of

damage in actively transcribed DNA

sequences in vivo. Genome 31, 605–611.

https://doi.org/10.1139/g89-113.

21. Hu, J., Adebali, O., Adar, S., and Sancar, A.

(2017). Dynamic maps of UV damage formation

and repair for the human genome. Proc. Natl.

Acad. Sci. USA 114, 6758–6763. https://doi.

org/10.1073/pnas.1706522114.

22. Hu, J., Adar, S., Selby, C.P., Lieb, J.D., and

Sancar, A. (2015). Genome-wide analysis of

human global and transcription-coupled

excision repair of UV damage at singlenucleotide resolution. Genes Dev. 29,

948–960. https://doi.org/10.1101/gad.

261271.115.

STAR Protocols 4, 102378, September 15, 2023

27

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る