リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Protocol to generate fast-dissociating recombinant antibody fragments for multiplexed super-resolution microscopy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Protocol to generate fast-dissociating recombinant antibody fragments for multiplexed super-resolution microscopy

Zhang, Qianli Miyamoto, Akitoshi Watanabe, Naoki 京都大学 DOI:10.1016/j.xpro.2023.102523

2023.09.15

概要

Multiplexed high-density label super-resolution microscopy image reconstruction by integrating exchangeable single-molecule localization (IRIS) enables elucidating fine structures and molecular distribution in cells and tissues. However, fast-dissociating binders are required for individual targets. Here, we present a protocol for generating antibody-based IRIS probes from existing antibody sequences. We describe steps for retrieving antibody sequences from databases. We then detail the construction, purification, and evaluation of recombinant probes after site-directed mutagenesis at the base of complementarity-determining region loops. The protocol accelerates dissociation rates without compromising the binding specificity. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).

この論文で使われている画像

参考文献

1. Zhang, Q., Miyamoto, A., Watanabe, S.,

Arimori, T., Sakai, M., Tomisaki, M., Kiuchi,

T., Takagi, J., and Watanabe, N. (2022).

Engineered fast-dissociating antibody

fragments for multiplexed super-resolution

microscopy. Cell Rep. Methods 2, 100301.

https://doi.org/10.1016/j.crmeth.2022.

100301.

2. Arimori, T., Kitago, Y., Umitsu, M., Fujii, Y.,

Asaki, R., Tamura-Kawakami, K., and

18

STAR Protocols 4, 102523, September 15, 2023

Takagi, J. (2017). Fv-clasp: An Artificially

Designed Small Antibody Fragment with

Improved Production Compatibility,

Stability, and Crystallizability. Structure 25,

1611–1622.e4. https://doi.org/10.1016/j.str.

2017.08.011.

3. Kiuchi, T., Higuchi, M., Takamura, A.,

Maruoka, M., and Watanabe, N. (2015).

Multitarget super-resolution microscopy

with high-density labeling by

exchangeable probes. Nat. Methods 12,

743–746. https://doi.org/10.1038/

nmeth.3466.

4. Miyoshi, T., Zhang, Q., Miyake, T.,

Watanabe, S., Ohnishi, H., Chen, J.,

Vishwasrao, H.D., Chakraborty, O.,

Belyantseva, I.A., Perrin, B.J., et al. (2021).

Semi-automated single-molecule

microscopy screening of fast-dissociating

specific antibodies directly from hybridoma

ll

Protocol

cultures. Cell Rep. 34, 108708. https://doi.

org/10.1016/j.celrep.2021.108708.

5. Brochet, X., Lefranc, M.P., and Giudicelli, V.

(2008). IMGT/V-QUEST: the highly customized

and integrated system for IG and TR

standardized V-J and V-D-J sequence analysis.

Nucleic Acids Res. 36, W503–W508. https://

doi.org/10.1093/nar/gkn316.

6. Al-Lazikani, B., Lesk, A.M., and Chothia, C.

(1997). Standard conformations for the

canonical structures of immunoglobulins.

J. Mol. Biol. 273, 927–948. https://doi.org/

10.1006/jmbi.1997.1354.

7. Sircar, A., Sanni, K.A., Shi, J., and Gray, J.J.

(2011). Analysis and modeling of the variable

region of camelid single-domain antibodies.

J. Immunol. 186, 6357–6367. https://doi.org/

10.4049/jimmunol.1100116.

8. Watanabe, N., and Mitchison, T.J. (2002).

Single-molecule speckle analysis of actin

OPEN ACCESS

filament turnover in lamellipodia. Science 295,

1083–1086. https://doi.org/10.1126/science.

1067470.

9. Dunbar, J., and Deane, C.M. (2016).

ANARCI: antigen receptor numbering and

receptor classification. Bioinformatics 32,

298–300. https://doi.org/10.1093/

bioinformatics/btv552.

12. Yamashiro, S., Mizuno, H., Smith, M.B.,

Ryan, G.L., Kiuchi, T., Vavylonis, D., and

Watanabe, N. (2014). New single-molecule

speckle microscopy reveals modification of

the retrograde actin flow by focal

adhesions at nanometer scales. Mol. Biol.

Cell 25, 1010–1024. https://doi.org/10.

1091/mbc.E13-03-0162.

10. Miyoshi, T., Friedman, T.B., and Watanabe,

N. (2021). Fast-dissociating but highly

specific antibodies are novel tools in

biology, especially useful for multiplex

super-resolution microscopy. STAR Protoc.

2, 100967. https://doi.org/10.1016/j.xpro.

2021.100967.

13. Go¨tzke, H., Kilisch, M., Martı´nez-Carranza, M.,

Sograte-Idrissi, S., Rajavel, A., Schlichthaerle,

T., Engels, N., Jungmann, R., Stenmark, P.,

Opazo, F., and Frey, S. (2019). The ALFA-tag is

a highly versatile tool for nanobody-based

bioscience applications. Nat. Commun. 10,

4403. https://doi.org/10.1038/s41467-01912301-7.

11. Suzuki, J., Kanemaru, K., Ishii, K., Ohkura, M.,

Okubo, Y., and Iino, M. (2014). Imaging

intraorganellar Ca2+ at subcellular

resolution using CEPIA. Nat. Commun.

5, 4153. https://doi.org/10.1038/ncomms5153.

14. Sela-Culang, I., Kunik, V., and Ofran, Y.

(2013). The structural basis of antibodyantigen recognition. Front. Immunol. 4,

302. https://doi.org/10.3389/fimmu.2013.

00302.

STAR Protocols 4, 102523, September 15, 2023

19

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る