リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dissemination of IncF group F1:A2:B20 plasmid-harboring multidrug-resistant Escherichia coli ST131 before the acquisition of blaCTX-M in Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dissemination of IncF group F1:A2:B20 plasmid-harboring multidrug-resistant Escherichia coli ST131 before the acquisition of blaCTX-M in Japan

林, 美智子 名古屋大学

2021.06.02

概要

Objectives: The Escherichia coli O25-ST131 clone is responsible for global dissemination of blaCTX-M. However, the prevalence of this clone in the digestive tract, devoid of antimicrobial selection, and its molecular epidemiology remain unclear. In this study, we examined the origin of blaCTX-M-positive E. coli O25-ST131 and its distribution.

Methods: We separately sequenced the chromosomal and plasmid genomes of 50 E. coli O25 isolates obtained from fecal samples of patients with diarrhea in Japan.

Results: Although 36 of 50 (72%) E. coli O25 isolates were ST131, only 6 harbored blaCTX-M. According to the fimH and ybbW sequences and fluoroquinolone susceptibility, H30R1 isolates were dominant (27/36; 75%) and possessed IncFII- FIA-FIB with FAB formula subtype F1:A2:B20 plasmids at a high frequency (24/27; 89%). The F1:A2:B20 plasmids possessed more resistance genes such as blaTEM-1, aminoglycoside resistance genes, and sulfamethoxazole-trimethoprim resistance genes compared to non-F1:A2:B20 plasmids. In contrast, only one blaCTX-M-14 was located on the F1:A2:B20 plasmids, whereas the other three were located on IncFII (F4:A-:B-) (n = 1) and IncZ plasmids (n = 2). Two H30Rx-ST131 isolates harbored blaCTX-M-15: one was on the chromosome and the other on the IncFIA-R plasmid. The stability and conjugation ability of the F1:A2:B20 plasmids were compared with those of non-F1:A2:B20 plasmids, which revealed higher stability but were less conjugative ability.

Conclusions: These results suggest that E. coli H30R1-ST131 is a multidrug-resistant clone containing several resistance genes in the F1:A2:B20 plasmid, which were widely distributed before the acquisition of blaCTX-M.

参考文献

[1] Canton R, Coque TM. 2006. The CTX-M beta-lactamase pandemic. Current opinion in microbiology 2006; 9(5): 466-75.

[2] Rogers BA, Sidjabat HE, Paterson DL. 2011. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J Antimicrob Chemother 66:1-14.

[3] Kudinha T, Johnson JR, Andrew S, Kong F, Anderson P, Gilbert GL. 2013. Escherichia coli sequence type 131 (ST131) as a prominent cause of antibiotic resistance among urinary Escherichia coli isolates from reproductive-age women. J. Clin. Microbiol. 51:3270-3276.

[4] Leflon-Guibout V, Blanco J, Amaqdouf K, Mora A, Guize L, Nicolas- Chanoine MH. 2008. Absence of CTX-M enzymes but high prevalence of clones, including clone ST131, among fecal Escherichia coli isolates from healthy subjects living in the area of Paris, France. J Clin Microbiol. 46:3900-3905.

[5] Kudinha T, Johnson JR, Andrew SD, Kong F, Anderson P, Gilbert GL. 2013. Genotypic and phenotypic characterization of Escherichia coli isolates from children with urinary tract infection and from healthy carriers. Pediatr. Infect. Dis. J. 32:543- 548.

[6] Nicolas-Chanoine MH, Gruson C, Bialek-Davenet S, Bertrand X, Thomas-Jean F, Bert F, et al. 2013. 10-Fold increase (2006-11) in the rate of healthy subjects with extended-spectrum β-lactamase-producing Escherichia coli faecal carriage in a Parisian check-up centre. J. Antimicrob. Chemother. 68:562-568.

[7] Nicolas-Chanoine MH, Bertrand X, Madec JY. 2014. Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27:5543-574.

[8] Price LB, Johnson JR, Aziz M, Clabots C, Johnston B, Tchesnokova V et al. 2013. The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx. mBio 4(6):e00377-13.

[9] Sauget M, Cholley P, Vannier A, Thouverez M, Nicolas-Chanoine MH, Hocquet D et al. 2016. Trends of extended-spectrum β -lactamase-producing Escherichia coli sequence type 131 and its H30 subclone in a French hospital over a 15-year period. Int J Antimicrob Agents 48:744-747.

[10] Merino I, Shaw E, Horcajada JP, Cercenado E, Mirelis B, Pallarés MA et al. 2016. CTX-M-15-H30Rx-ST131 subclone is one of the main causes of healthcare-associated ESBL-producing Escherichia coli bacteremia of urinary origin in Spain. J Antimicrob Chemother 71:2125-2130.

[11] Ho PL, Chu YPS, Lo WU, Chow KH, Law PY, Tse CWS et al. 2015. High prevalence of Escherichia coli sequence type 131 among antimicrobial-resistant E. coli isolates from geriatric patients. J Med Microbiol 64:243-247.

[12] Kim SY, Park YJ, Johnson JR, Yu JK, Kim YK, Kim YS. 2016. Prevalence and characteristics of Escherichia coli sequence type 131 and its H30 and H30Rx subclones: a multicenter study from Korea. Diagn Microbiol Infect Dis 84:97-101.

[13] Johnson TJ, Danzeisen JL, Youmans B, Case K, Llop K, Munoz-Aguayo J et al. 2016. Separate F-type plasmids have shaped the evolution of the H30 subclone of Escherichia coli sequence type 131. mSphere 1(4)e00121-16.

[14] Matsumura Y, Johnson JR, Yamamoto M, Nagao M, Tanaka M, Takakura S et al. 2015. CTX-M-27- and CTX-M-14-producing, ciprofloxacin-resistant Escherichia coli of the H30 subclonal group within ST131 drive a Japanese regional ESBL epidemic. J Antimicrob Chemother 70:1639-1649.

[15] Matsumura Y, Pitout JDD, Gomi R, Matsuda T, Noguchi T, Yamamoto M et al. 2016. Global Escherichia coli sequence type 131 clade with blaCTX-M-27 gene. Emerg Infect Dis 22:1900-1907.

[16] Mahérault AC, Kemble H, Magnan M, Gachet B, Roche D, Le-Nagard H et al. 2019. Advantage of the F2:A1:B- IncF pandemic plasmid over IncC plasmids in in vitro acquisition and evolution of blaCTX-M gene-bearing plasmids in Escherichia coli. Antimicrob Agents Chemother 63: e01130-19.

[17] 17.Clinical and Laboratory Standards Institute. 2016. Performance standards for antimicrobial susceptibility testing; twenty-sixth informational supplement. Document M100-S26. Wayne, PA.

[18] 18.Barton BM, Harding GP, Zuccarelli AJ. 1995. A general method for detecting and sizing large plasmids. Anal Biochemistry 226:235-240.

[19] Akiba M, Sekizuka T, Yamashita A, Kuroda M, Fujii Y, Murata M et al. 2016. Distribution and relationships of antimicrobial resistance determinants among extended-spectrum-cephalosporin-resistant or carbapenem-resistant Escherichia coli isolates from rivers and sewage treatment plants in India. Antimicrob Agents Chemother 60:2972-2980.

[20] 20.Coil D, Jospin G, Darling AE. 2015. A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics 31:587-589.

[21] Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11:119.

[22] Carattoli A, Zankari E, Garcia-Fernandez A, Larsen MV, Lund O, Villa L et al. 2014. In silico detection and typing of plasmids using Plasmid-Finder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi:10.1128/AAC.02412-14.

[23] Villa L, García-Fernández A, Fortini D, Carattoli A. 2010. Replicon sequence typing of IncF plasmids carrying virulence and resistance determinants. J Antimicrob Chemother 65:2518-2529.

[24] Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O et al. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640-2644.

[25] 25.Dahbi G, Mora A, Mamani R, López C, Alonso MP, Marzoa J et al. 2014. Molecular epidemiology and virulence of Escherichia coli O16: H5-ST131: comparison with H30 and H30-Rx subclones of O25b: H4-ST131. Int J Med Microbiol 304:1247-1257.

[26] Paul S, Linardopoulou EV, Billig M, Tchesnokova V, Price LB, Johnson JR et al. 2013. Role of homologous recombination in adaptive diversification of extraintestinal Escherichia coli. J Bacteriol 195:231-242.

[27] 27.Banerjee R, Robicsek A, Kuskowski MA, Porter S, Johnston BD, Sokurenko E et al. 2013. Molecular epidemiology of Escherichia coli sequence type 131 and its H30 and H30-Rx subclones among extended-spectrum-β-lactamase-positive and -negative E. coli clinical isolates from the Chicago region, 2007 to 2010. Antimicrob Agents Chemother 57:6385-6388.

[28] 28.Kim YA, Kim JJ, Kim H, Lee K. 2017. Community-onset extended-spectrumβ-lactamase-producing Escherichia coli sequence type 131 at two Korean community hospitals: The spread of multidrug-resistant E. coli to the community via healthcare facilities. Int J Infect Dis 54:39-42.

[29] Dahbi G, Mora A, Mamani R, López C, Alonso MP, Marzoa J et al. 2014. Molecular epidemiology and virulence of Escherichia coli O16:H5-ST131: comparison with H30 and H30-Rx subclones of O25b:H4-ST131. Int J Med Microbiol 304:1247-1257.

[30] Stoesser N, Sheppard AE, Pankhurst L, De Maio N, Moore CE, Sebra R, et al. 2016. Evolutionary history of the global emergence of the Escherichia coli epidemic clone ST131. mBio 7(2):e02162.

[31] Jamborova I, Johnston BD, Papousek I, Kachlikova K, Micenkova L, Clabots C et al. 2018. Extensive genetic commonality among wildlife, wastewater, community, and nosocomial isolates of Escherichia coli sequence type 131 (H30R1 and H30Rx subclones) that carry blaCTX-M-27 or blaCTX-M-15. Antimicrob Agents Chemother 62(10):e00519-18.

[32] Decano AG, Downing T. 2019. An Escherichia coli ST131 pangenome atlas reveals population structure and evolution across 4,071 isolates. Sci Rep 9(1):17394.

[33] Maherault AC, Kemble H, Magnan M, Gachet B, Roche D, Le Nagard H, et al. 2019. Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of blaCTX-M Gene-Bearing Plasmids in Escherichia coli. Antimicrob Agents Chemother. 63(10) e01130-19.

[34] Matsuo N, Nonogaki R, Hayashi M, Wachino JI, Suzuki M, Arakawa Y, et al. 2020. Characterization of blaCTX-M-27/F1:A2:B20 Plasmids Harbored by Escherichia coli Sequence Type 131 Sublineage C1/H30R Isolates Spreading among Elderly Japanese in Nonacute-Care Settings. Antimicrob Agents Chemother 64(5) e00202- 20.

[35] Okubo T, Sato T, Yokota S, Usui M, Tamura Y. 2014. Comparison of broad- spectrum cephalosporin-resistant Escherichia coli isolated from dogs and humans in Hokkaido, Japan. J Infect Chemother 20:243-249.

[36] Teramae M, Osawa K, Shigemura K, Kitagawa K, Shirakawa T, Fujisawa M et al. 2019. Prevalence of quinolone resistance of extended-spectrum β-lactamase- producing Escherichia coli with ST131-fimH30 in a city hospital in Hyogo, Japan. Int J Mol Sci 20:5162.

[37] Horie A, Nariai A, Katou F, Abe Y, Saito Y, Koike D et al. 2019. Increased community-acquired upper urinary tract infections caused by extended-spectrum βlactamase-producing Escherichia coli in children and the efficacy of flomoxef and cefmetazole. Clin Exp Nephrol 23:1306-1314.

[38] Saeki M, Sato T, Furuya D, Yakuwa Y, Sato Y, Kobayashi R et al. 2020. Clonality investigation of clinical Escherichia coli isolates by polymerase chain reaction-based open-reading frame typing method. J Infect Chemother 26:38-42.

[39] Komatsu Y, Kasahara K, Inoue T, Lee ST, Muratani T, Yaho H et al. 2018. Molecular epidemiology and clinical features of extended-spectrum β-lactamase- or carbapenemase-producing Escherichia coli bacteremia in Japan. PLoS One 13(8):e0202276.

[40] Bevan ER, Jones AM, Hawkey PM. 2017. Global epidemiology of CTX-M betalactamases: temporal and geographical shifts in genotype. J Antimicrob Chemother. 2017;72(8):2145-55.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る