リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High-accurate FE simulation on compressive behavior of steel cruciform column with welding imperfection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High-accurate FE simulation on compressive behavior of steel cruciform column with welding imperfection

Cheng, Yuxuan 大阪大学

2023.09.01

概要

Welding is widely used for joining members in the construction of
steel structures such as bridges and ships. The popularity of welding can
be attributed to its versatility in narrow spaces, high joint efficiency, and
design flexibility. However, welding can cause deformation and residual
stress owing to the temperature difference within the component
resulting from localized heat input. Welding deformation affects the
stiffness of members as an initial deflection [1]. Regarding welding re­
sidual stress, the localized heat input causes the welded part to expand
during the welding process, which is then constrained by the sur­
rounding base metal during cooling. As a result, high tensile stress is
generated near the welded part, while compressive stress is produced
away from it to counterbalance the tensile stress. Additionally, the
presence of compressive residual stress can significantly impact the
load-bearing performance of members [2]. ...

この論文で使われている画像

参考文献

[1] T. Yao, P.I. Nikolov, Y. Miyagawa, Mechanical Effects of Welding, Springer,

Heidelberg, 1992, pp. 261–268.

[2] Y. Ueda, W. Yasukawa, T. Yao, H. Ikegami, R. Ohminami, Effects of welding

residual stresses and initial deflection on rigidity and strength of square plates

subjected to compression (Report II), Trans. JWRI 6 (1) (1977) 33–38.

[3] Y. Ueda, T. Yao, The influence of complex initial deflection modes on the behaviour

and ultimate strength of rectangular plates in compression, J. Constr. Steel Res. 5

(4) (1985) 265–302.

[4] J.K. Paik, A.K. Thayamballi, Ultimate Limit State Design of Steel-Plated Structures,

John Wiley & Sons, San Ramon, 2003.

10

Y. Cheng et al.

Finite Elements in Analysis & Design 221 (2023) 103960

[14] G. Fu, M.I. Lourenço, Influence of the welding sequence on residual stress and

distortion of fillet welded structures, Mar. Struct. 46 (2016) 30–55.

[15] H. Nakagawa, H. Suzuki, Ultimate temperatures of steel beams subjected to fire,

Steel Construction Engineering 6 (22) (1999) 57–65.

[16] Y.C. Kim, J.Y. Lee, K. Inose, The high accurate prediction of welding distortion

generated by fillet welding, Q. J. Jpn. Weld Soc. 23 (3) (2005) 431–435.

[17] M.P. Aung, H. Katsuda, M. Hirohata, Fatigue-performance improvement of patchplate welding via PWHT with induction heating, J. Constr. Steel Res. 160 (2019)

280–288.

[18] M. Hirohata, F. Takeda, M. Suzaki, K. Inose, N. Matsumoto, D. Abe, Influence of

laser-arc hybrid welding conditions on cold cracking generation, Weld. World 63

(2019) 1407–1416.

[19] M. Hirohata, Effect of post weld heat treatment on steel plate deck with trough rib

by portable heat source, Weld. World 61 (6) (2017) 1225–1235.

[20] M.M. Pastor, J. Bonada, F. Roure, M. Casafont, Residual stresses and initial

imperfections in non-linear analysis, Eng. Struct. 46 (2013) 493–507.

[21] H. Akima, A new method of interpolation and smooth curve fitting based on local

procedures, J. ACM 17 (4) (1970) 589–602.

[22] Japan Welding Society, Welding and Joining Handbook, second ed., Maruzen

Publishing, Tokyo, 2003 (In Japanese).

[23] W. Jiang, G. Bao, J.C. Robert, Finite element modeling of stiffened and unstiffened

orthotropic plates, Comput. Struct. 63 (1) (1997) 105–117.

[5] P. Ferro, F. Bonollo, A. Tiziani, Methodologies and experimental validations of

welding process numerical simulation, Int. J. Comput. Mater. Sci. Surf. Eng. 3 (2–3)

(2010) 114–132.

[6] C.Y. Wei, W.G. Jiang, Influence of welding groove on residual stress and distortion

in T-joint weld, in: IOP Conference Series: Materials Science and Engineering vol.

733, IOP Publishing, Shanghai, 2020, 012010.

[7] A.J. Sadowski, J.M. Rotter, Solid or shell finite elements to model thick cylindrical

tubes and shells under global bending, Int. J. Mech. Sci. 74 (2013) 143–153.

[8] M. Hirohata, Y. Itoh, High effective FE simulation methods for deformation and

residual stress by butt welding of thin steel plates, Engineering 6 (9) (2014)

507–515.

[9] M. Hirohata, Y. Itoh, A simplified FE simulation method with shell element for

welding deformation and residual stress generated by multi-pass butt welding,

International Journal of Steel Structures 16 (1) (2016) 51–58.

[10] M. Hirohata, S. Nozawa, Y. Tokumaru, Verification of FEM simulation by using

shell elements for fillet welding process, Int. J. Interact. Des. Manuf. 16 (2022)

1–13.

[11] Japan Road Association, Specifications for Highway Bridges Part II Steel Bridges,

Maruzen Publishing, Tokyo, 2012 (In Japanese).

[12] R. Bai, Z. Guo, C. Tian, et al., Investigation on welding sequence of I-beam by

hybrid inversion, Mar. Struct. 62 (2018) 23–39.

[13] B. Chen, C.G. Soares, Effect of welding sequence on temperature distribution,

distortions, and residual stress on stiffened plates, Int. J. Adv. Manuf. Technol. 86

(2016) 3145–3156.

11

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る