リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Experimental investigation of a multistage buckling-restrained brace」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Experimental investigation of a multistage buckling-restrained brace

Sitler Benjamin Jacob 竹内 徹 松井 良太 寺嶋 正雄 寺澤友貴 Ben Sitler Toru Takeuchi Ryota Matsui Masao Terashima Yuki Terazawa 東京工業大学 DOI:https://doi.org/10.1016/j.engstruct.2020.110482

2020.06.15

概要

While buckling-restrained braces offer excellent energy dissipation characteristics, their low post-yield stiffness may result in large residual drifts and interstory drift concentration when used in simply supported frames. This paper introduces a new multistage buckling-restrained brace to help mitigate these design challenges. The proposed device features two low yield point (LYP) cores with LY225 and short yield lengths, and one high yield point (HYP) core with SA440B and a longer yield length. In a design level event, the LYP cores dissipate energy, while the parallel HYP core provides an elastic restoring force. At large drifts, the HYP core yields and the device acts similar to a high-capacity, ductile, conventional BRB.
 A 384 kN specimen was tested at up to 1.5% strain and the individual core contributions recorded using strain gauges attached to the elastic core segments inside the restrainer. The multistage response matched the predicted trilinear backbone, achieving 10 to 20% equivalent damping prior to yielding the HYP core, and a fatigue capacity exceeding three times the AISC 341-16 acceptance criteria. Interaction between the decoupled cores was studied using a 3D finite element model, indicating that minor detailing changes could further improve performance.

参考文献

[1] Takeuchi T, Wada A. Buckling-restrained braces and applications. Jpn Soc Seism Isolat 2017.

[2] MacRae G, Kimura Y, Roeder C. Effect of column stiffness on braced frame seismic behaviour. J Struct Eng ASCE 2004;130:381–91. https://doi.org/10.1061/(ASCE) 0733-9445(2004)130:3(381).

[3] Zaruma S, Fahnestock L. Assessment of design parameters influencing seismic col- lapse performance of buckling-restrained braced frames. Soil Dyn Earthq Eng 2018;113:35–46. https://doi.org/10.1016/j.soildyn.2018.05.021.

[4] Kiggins S, Uang C. Reducing residual drift of buckling-restrained braced frames as a dual system. Eng Struct 2006;28:1525–32.

[5] Wada A, Connor J, Kawai H, Iwata M, Watanabe A. Damage tolerant structure. 5th US-Japan Workshop on the Improvement of Building Structural Design and Construction Practices; 1992.

[6] Takeuchi T, Chen X, Matsui R. Seismic performance of controlled spine frames with energy-dissipating members. J Constr Steel Res 2015;114:51–65. https://doi.org/ 10.1016/j.jcsr.2015.07.002.

[7] Miller D, Fahnestock L, Eatherton M. Development and experimental validation of a nickel-titanium shape memory alloy self-centering buckling-restrained brace. Eng Struct 2012;40:288–98. https://doi.org/10.1016/j.engstruct.2012.02.037.

[8] Yamamoto M, Sone T. Damping systems that are effective over a wide range of displacement amplitudes using metallic yielding component and viscoelastic damper in series. Earthq Eng Struct Dyn 2014;43:2097–114. https://doi.org/10. 1002/eqe.2438.

[9] Saeki E. Hysteresis characteristics of steels and buckling restrained unbonded braces. Doctoral Thesis, Tokyo Institute of Technology; 1997 [in Japanese].

[10] Atlayan O, Charney F. Hybrid buckling-restrained braced frames. J Constr Steel Res 2014;96:95–105.

[11] Jia LJ, Li RW, Xiang P, Zhou DY, Dong Y. Resilient steel frames installed with self- centering dual-steel buckling-restrained brace. J Constr Steel Res 2018;149:95–104. https://doi.org/10.1016/j.jcsr.2018.07.001.

[12] Hoveidae N. Numerical investigation of seismic response of hybrid buckling re- strained braced frames. Period Polytech Civ Eng 2019;63:130–40. https://doi.org/ 10.3311/PPci.12040.

[13] Barbagallo F, Bosco M, Marino E, Rossi P. Achieving a more effective concentric braced frame by the double stage yield BRB. Eng Struct 2019;186:484–97. https:// doi.org/10.1016/j.engstruct.2019.02.028.

[14] Architectural Institute of Japan. Recommended provisions for seismic damping systems applied to steel structures; 2014 [in Japanese].

[15] Sitler B, Takeuchi T. Effect of steel grade and core yield length in multistage buckling-restrained braces subjected to mainshock-aftershock sequences. Pacific Struct Steel Conf 2019.

[16] Li GQ, Sun YZ, Jiang J, Sun FF, Ji C. Experimental study on two-level yielding buckling-restrained braces. J Constr Steel Res 2019;159:260–9. https://doi.org/10. 1016/j.jcsr.2019.04.042.

[17] Sun J, Pan P, Wang H. Development and experimental validation of an assembled steel double-stage yield buckling restrained brace. J Constr Steel Res 2018;145:330–40. https://doi.org/10.1016/j.jcsr.2018.03.003.

[18] Nippon Steel Engineering. Unbonded brace catalogue; 2016 [in Japanese].

[19] American Institute of Steel Construction. Seismic provisions for structural steel buildings. ANSI/AISC 341-16; 2016.

[20] Shibata A. Dynamic analysis of earthquake resistant structures. Sendai: Tohoku University Press; 2010.

[21] Yoshikawa H, Nishimoto K, Konishi H, Watanabe A. Fatigue properties of unbonded braces and u-shaped steel dampers. Nippon Steel Engineering Technical Report 2010;11:84–91. [in Japanese].

[22] Smith M. ABAQUS/Explicit User’s Manual, Version 2017. Simulia; 2017.

[23] Nguyen N, Whittaker A. Numerical modelling of steel-plate concrete composite shear walls. Eng Struct 2017;150:1–11. https://doi.org/10.1016/j.engstruct.2017. 06.030.

[24] Ono T, Sato A. Modeling of stress-strain relationships of metallic materials. J Struct Constr Eng AIJ 2000;532:177–84. https://doi.org/10.3130/aijs.65.177_2. [in Japanese].

[25] Black C, Makris N, Aiken I. Component testing, seismic evaluation and character- ization of buckling-restrained braces. J Struct Eng ASCE 2004;130:880–94. https:// doi.org/10.1061/(ASCE)0733-9445(2004)130:6(880).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る