リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study of Spatiotemporal Development of Global Distribution of Magnetospheric ELF/VLF Waves Using Ground‐Based and Satellite Observations, and RAM‐SCB Simulations, for the March and November 2017 Storms」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study of Spatiotemporal Development of Global Distribution of Magnetospheric ELF/VLF Waves Using Ground‐Based and Satellite Observations, and RAM‐SCB Simulations, for the March and November 2017 Storms

Takeshita, Yuhei Shiokawa, Kazuo Miyoshi, Yoshizumi Ozaki, Mitsunori Kasahara, Yoshiya Oyama, Shin‐ichiro Connors, Martin Manninen, Jyrki Jordanova, Vania K. Baishev, Dmitry Oinats, Alexey Kurkin, Vladimir 名古屋大学

2021.02

概要

Magnetospheric Extremely Low-Frequency/Very Low-Frequency (ELF/VLF) waves have an important role in the acceleration and loss of energetic electrons in the magnetosphere through wave-particle interaction. It is necessary to understand the spatiotemporal development of magnetospheric ELF/VLF waves to quantitatively estimate this effect of wave-particle interaction, a global process not yet well understood. We investigated spatiotemporal development of magnetospheric ELF/VLF waves using 6 PWING ground-based stations at subauroral latitudes, Exploration of energization and Radiation in Geospace and RBSP satellites, POES/MetOp satellites, and the RAM-SCB model, focusing on the March and November 2017 storms driven by corotating interaction regions in the solar wind. Our results show that the ELF/VLF waves are enhanced over a longitudinal extent from midnight to morning and dayside associated with substorm electron injections. In the main to early storm recovery phase, we observe continuous ELF/VLF waves from ∼0 to ∼12 MLT in the dawn sector. This wide extent seems to be caused by frequent occurrence of substorms. The wave region expands eastward in association with the drift of source electrons injected by substorms from the nightside. We also observed dayside ELF/VLF wave enhancement, possibly driven by magnetospheric compression by solar wind, over an MLT extent of at least 5 h. Ground observations tend not to observe ELF/VLF waves in the post-midnight sector, although other methods clearly show the existence of waves. This is possibly due to Landau damping of the waves, the absence of the plasma density duct structure, and/or enhanced auroral ionization of the ionosphere in the post-midnight sector.

この論文で使われている画像

関連論文

参考文献

Anderson, R. R., & Maeda, K. (1977). VLF emissions associated with enhanced magnetospheric electrons. Journal of Geophysical Research, 82(1), 135–146. https://doi.org/10.1029/JA082i001p00135

Chen, Y., Reeves, G. D., Friedel, R. H. W., & Cunningham, G. S. (2014). Global time-dependent chorus maps from low-Earth-orbit electron precipitation and Van Allen Probes data. Geophysical Research Letters, 41, 755–761. https://doi.org/10.1002/2013GL059181

Evans, D. S., & Greer, M. S. (2004). Polar orbiting environmental satellite Space environment monitor–2 instrument descriptions and archive data documentation, NOAA tech. Mem. 1.4. Boulder, CO: Space Environ. Lab..

Hanzelka, M., & Santolik, O. (2019). Effects of ducting on whistler mode chorus or exohiss in the outer radiation belt. Geophysical Research Letters, 46, 5735–5745. https://doi.org/10.1029/2019GL083115

Helliwell, R. A. (1965). In: Whistlers and related ionospheric phenomena. Stanford, CA: Stanford University Press, Vol.1.

Horne, R. B. (1989). Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation. Journal of Geophysical Research, 94(A7), 8895–8909.

Horne, R. B., & Thorne, R. M. (2003). Relativistic electron acceleration and precipitation during resonant interactions with whistler-mode chorus. Geophysical Research Letters, 30, 1527. https://doi.org/10.1029/2003GL016973, 10

Jordanova, V. K., Thorne, R. M., Li, W., & Miyoshi, Y. (2010). Excitation of whistler mode chorus from global ring current simulations.

Journal of Geophysical Research, 115, A00F10. https://doi.org/10.1029/2009JA014810

Jordanova, V. K., Tu, W., Chen, Y., Morley, S. K., Panaitescu, A.-D., Reeves, G. D., & Kletzing, C. A. (2016). RAM-SCB simulations of electron transport and plasma wave scattering during the October 2012 “double-dip” storm. Journal of Geophysical Research: Space Physics, 121, 8712–8727. https://doi.org/10.1002/2016JA022470

Jordanova, V. K., Welling, D. T., Zaharia, S. G., Chen, L., & Thorne, R. M. (2012). Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm. Journal of Geophysical Research, 117, A00L08. https://doi. org/10.1029/2011JA017433

Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., Ishisaka, K., Kumamoto, A., et al. (2018a). The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite. Earth Planets and Space, 70(1), 86. https://doi.org/10.1186/s40623-018-0842-4

Kasahara, Y., Kojima, H., Matsuda, S., Ozaki, M., Yagitani, S., Shoji, M., et al. (2018b). The PWE/OFA instrument Level-2 spectrum data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, V02.01. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-08000

Kennel, C. F., & Petschek, H. E. (1966). Limit on stably trapped particle fluxes. Journal of Geophysical Research, 71, 1.

Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., et al. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Science Reviews, 179, 127–181. https://doi.org/10.1007/ s11214-013-9993-6

Lam, M. M., Horne, R. B., Meredith, N. P., Glauert, S. A., Moffat-Griffn, T., & Green, J. C. (2010). Origin of energetic electron precipitation >30 keV into the atmosphere. Journal of Geophysical Research, 115, A00F08. https://doi.org/10.1029/2009JA014619

Li, W., Ni, B., Thorne, R. M., Bortnik, J., Green, J. C., Kletzing, C. A., et al. (2013). Constructing the global distribution of chorus wave intensity using measurements of electrons by the POES satellites and waves by the Van Allen Probes. Geophysical Research Letters, 40, 4526–4532. https://doi.org/10.1002/grl.50920

Li, W., Thorne, R. M., Angelopoulos, V., Bortnik, J., Cully, C. M., Ni, B., et al. (2009). Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft. Geophysical Research Letters, 36, L09104. https://doi.org/10.1029/2009GL037595

Li, W., Thorne, R. M., Nishimura, Y., Bortnik, J., Angelopoulos, V., McFadden, J. P., et al. (2010). THEMIS analysis of observed equatorial electron distributions responsible for the chorus excitation. Journal of Geophysical Research, 115, A00F11. https://doi. org/10.1029/2009JA014845

Manninen, J., Turunen, T., Kleimenova, N., Rycroft, M., Gromova, L., & Sirviö, I. (2016). Unusually high frequency natural VLF radio emissions observed during daytime in Northern Finland. Environmental Research Letters, 11 https://doi.org/10.1088/1748-9326/11/12/124006

Martinez-Calderon, C., Shiokawa, K., Miyoshi, Y., Ozaki, M., Schofield, I., & Connors, M. (2015). Statistical study of ELF/VLF emissions at subauroral latitudes in Athabasca, Canada. Journal of Geophysical Research - Space Physics, 120. https://doi.org/10.1029/2015JA021347

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. (2013). Science objectives and rationale for the Radiation Belt Storm Probe mission. Space Science Reviews, 179, 3–27. https://doi.org/10.1007/s11214-012-9908-y

Meredith, N. P., Cain, M., Horne, R. B., Thorne, R. M., Summers, D., & Anderson, R. R. (2003a). Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. Journal of Geophysical Research, 108, 1248, A6. https://doi.org/10.1029/2002JA009764

Meredith, N. P., Horne, R. B., & Anderson, R. R. (2001). Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. Journal of Geophysical Research, 106(A7), 13165–13178. https://doi.org/10.1029/2000JA900156

Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., & Thorne, R. M. (2012). Global model of lower band and upper band chorus from multiple satellite observations. Journal of Geophysical Research, 117, A10225. https://doi.org/10.1029/2012JA017978

Meredith, N. P., Horne, R. B., Thorne, R. M., & Anderson, R. R. (2003b). Favored regions for chorus-driven electron acceleration to relativistic energies in the Earth's outer radiation belt. Geophysical Research Letters, 30, 1871. https://doi.org/10.1029/2003GL017698, 16

Miyoshi, Y., Hori, T., Shoji, M., Teramoto, M., Chang, T. F., Segawa, T., et al. (2018a). The ERG science center. Earth, Planets and Space, 70, 96. https://doi.org/10.1186/s40623-018-0867-8

Miyoshi, Y., & Kataoka, R. (2005). Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Geophysical Research Letters, 32, L21105. https://doi.org/10.1029/2005GL024590

Miyoshi, Y., Kataoka, R., & Ebihara, Y. (2016). Flux Enhancement of Relativistic Electrons Associated with Substorms. In G. Balasis, I. A. Daglis, & I. R. Mann (Eds.), Waves, particles, and storms in Geospace (pp. 333–353) Oxford Press.

Miyoshi, Y., Kataoka, R., Kasahara, Y., Kumamoto, A., Nagai, T., & Thomsen, M. (2013). High-speed solar wind with southward interplanetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves. Geophysical Research Letters, 40. https://doi.org/10.1002/grl.50916

Miyoshi, Y., Morioka, A., Obara, T., Misawa, H., Nagai, T., & Kasahara, Y. (2003). Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations. Journal of Geophysical Research, 108(A1), 1004. https://doi. org/10.1029/2001JA007542

Miyoshi, Y., Oyama, S., Saito, S., Kurita, S., Fujiwara, H., Kataoka, R., et al. (2015a). Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations. Journal of Geophysical Research: Space Physics, 120, 2754–2766. https://doi. org/10.1002/2014JA020690

Miyoshi, Y., Saito, S., Seki, K., Nishiyama, T., Kataoka, R., Asamura, K., et al. (2015b). Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves. Journal of Geophysical Research: Space Physics, 120, 7728–7736. https://doi.org/10.1002/2015JA021562

Miyoshi, Y., Shinohara, I., & Jun, C.-W. (2018b). The Level-2 orbit data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v03. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi. org/10.34515/DATA.ERG-12000

Miyoshi, Y., Shinohara, I., & Jun, C.-W. (2018c). The Level-3 orbit data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v02. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi. org/10.34515/DATA.ERG-12001

Omura, Y., Hikishima, M., Katoh, Y., Summers, D., & Yagitani, S. (2009). Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere. Journal of Geophysical Research, 114, A07217. https://doi.org/10.1029/2009JA014206

Omura, Y., & Summers, D. (2004). Computer simulations of relativistic whistler-mode wave-particle interactions. Physics of Plasmas, 11,3530.

Ozaki, M., Miyoshi, Y., Shiokawa, K., Hosokawa, K., Oyama, S. I., Kataoka, R., et al. (2019). Visualization of rapid electron precipitation via chorus element wave–particle interactions. Nature Communications, 10, 257. https://doi.org/10.1038/s41467-018-07996-z

Ozaki, M., Shiokawa, K., Miyoshi, Y., Hosokawa, K., Oyama, S., Yagitani, S., et al. (2018a). Microscopic observations of pulsating aurora associated with chorus element structures: Coordinated Arase satellite-PWING observations. Geophysical Research Letters, 45 12125–12134. https://doi.org/10.1029/2018GL079812

Ozaki, M., Yagitani, S., Kasahara, Y., Kojima, H., Kasaba, Y., Kumamoto, A., et al. (2018b). Magnetic Search Coil (MSC) of Plasma Wave Experiment (PWE) aboard the Arase (ERG) satellite. Earth Planets and Space, 70, 76. https://doi.org/10.1186/s40623-018-0837-1

Ozaki, M., Yagitani, S., Nagano, I., Hata, Y., Yamagishi, H., Sato, N., & Kadokura, A. (2008). Localization of VLF ionospheric exit point by comparison of multipoint ground-based observation with full-wave analysis. Polar Science, 2(4), 237–249. https://doi.org/10.1016/j. polar.2008.09.001

Santolik, O., Chum, J., Parrot, M., Gurnett, D. A., Pickett, J. S., & Cornilleau-Wehrlin, N. (2006). Propagation of whistler mode chorus to low altitudes: Spacecraft observations of structured ELF hiss. Journal of Geophysical Research, 111, A10208. https://doi. org/10.1029/2005JA011462

Santolik, O., Gurnett, D. A., Pickett, J. S., Parrot, M., & Cornilleau-Wehrlin, N. (2003). Spatio-temporal structure of storm-time chorus. Journal of Geophysical Research, 108(A7), 1278. https://doi.org/10.1029/2002JA009791

Santolik, O., Macusova, E., Yearby, K. H., Cornilleau-Wehrlin, N., & Alleyne, H. S. K. (2005). Radial variation of whistler-mode chorus: First results from the STAFF/DWP instrument on board the Double Star TC-1 spacecraft. Annals of Geophysics, 23, 2937.

Shiokawa, K., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki, M., et al. (2017). Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth Planets and Space, 69(1), 160. https://doi.org/10.1186/s40623-017-0745-9

Shiokawa, K., Yokoyama, Y., Ieda, A., Miyoshi, Y., Nomura, R., Lee, S., et al. (2014). Ground-based ELF/VLF chorus observations at subauroral latitudes—VLF-CHAIN Campaign. Journal of Geophysical Research: Space Physics, 119. https://doi.org/10.1002/2014JA020161

Smith, R. L., & Helliwell, R. A. (1960). Electron densities to 5 Earth radii deduced from nose whistlers. Journal of Geophysical Research, 65(9), 2583–2583. https://doi.org/10.1029/JZ065i009p02583

Streltsov, A. V., Lampe, M., Manheimer, W., Ganguli, G., & Joyce, G. (2006). Whistler propagation in inhomogeneous plasma. Journal of Geophysical Research, 111, A03216. https://doi.org/10.1029/2005JA011357

Summers, D., Ma, C., Meredith, N. P., Horne, R. B., Thorne, R. M., Heynderickx, D., & Anderson, R. R. (2002). Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm. Geophysical Research Letters, 29(24), 2174. https://doi.org/10.1029/2002GL016039

Takeshita, Y., Shiokawa, K., Ozaki, M., Manninen, J., Oyama, S. -I., Connors, M., et al. (2019). Longitudinal extent of magnetospheric ELF/VLF waves using multipoint PWING ground stations at subauroral latitudes. Journal of Geophysical Research: Space Physics, 124, 9811–9892. https://doi.org/10.1029/2019JA026810

Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., et al. (2015). International Geomagnetic Reference Field: The 12th generation. Earth Planets and Space, 67, 79. https://doi.org/10.1186/s40623-015-0228-9

Tsurutani, B. T., & Smith, E. J. (1974). Postmidnight chorus: A substorm phenomenon. Journal of Geophysical Research, 79(1), 118.

Tsyganenko, N. A., & Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research, 110, A03208. https://doi.org/10.1029/2004JA010798

Yonezu, Y., Shiokawa, K., Connors, M., Ozaki, M., Manninen, J., Yamagishi, H., & Okada, M. (2017). Simultaneous observations of magnetospheric ELF/VLF emissions in Canada, Finland, and Antarctica. Journal of Geophysical Research: Space Physics, 122, 6442–6454. https://doi.org/10.1002/2017JA024211

Zhou, C., Li, W., Thorne, R. M., Bortnik, J., Ma, Q., An, X., et al. (2015). Excitation of dayside chorus waves due to magnetic field line compression in response to interplanetary shocks. Journal of Geophysical Research: Space Physics, 120, 8327–8338. https://doi. org/10.1002/2015JA021530

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る