リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Plasma and Field Observations in the Magnetospheric Source Region of a Stable Auroral Red (SAR) Arc by the Arase Satellite on 28 March 2017」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Plasma and Field Observations in the Magnetospheric Source Region of a Stable Auroral Red (SAR) Arc by the Arase Satellite on 28 March 2017

Inaba, Yudai Shiokawa, Kazuo Oyama, Shin‐ichiro Otsuka, Yuichi Oksanen, Arto Shinbori, Atsuki Gololobov, Artem Yu Miyoshi, Yoshizumi Kazama, Yoichi Wang, Shiang‐Yu Tam, Sunny W. Y. Chang, Tzu‐Fang Wang, Bo‐Jhou Yokota, Shoichiro Kasahara, Satoshi Keika, Kunihiro Hori, Tomoaki Matsuoka, Ayako Kasahara, Yoshiya Kumamoto, Atsushi Kasaba, Yasumasa Tsuchiya, Fuminori Shoji, Masafumi Shinohara, Iku Stolle, Claudia 名古屋大学

2020.10

概要

A stable auroral red (SAR) arc is an aurora with a dominant 630 nm emission at subauroral latitudes. SAR arcs have been considered to occur due to the spatial overlap between the plasmasphere and the ring‐current ions. In the overlap region, plasmaspheric electrons are heated by ring‐current ions or plasma waves, and their energy is then transferred down to the ionosphere where it causes oxygen red emission. However, there have been no study conducted so far that quantitatively examined plasma and electromagnetic fields in the magnetosphere associated with SAR arc. In this paper, we report the first quantitative evaluation of conjugate measurements of a SAR arc observed at 2204 UT on 28 March 2017 and investigate its source region using an all‐sky imager at Nyrölä (magnetic latitude: 59.4°N), Finland, and the Arase satellite. The Arase observation shows that the SAR arc appeared in the overlap region between a plasmaspheric plume and the ring‐current ions and that electromagnetic ion cyclotron waves and kinetic Alfven waves were not observed above the SAR arc. The SAR arc was located at the ionospheric trough minimum identified from a total electron content map obtained by the GNSS receiver network. The Swarm satellite flying in the ionosphere also passed the SAR arc at ~2320 UT and observed a decrease in electron density and an increase in electron temperature during the SAR‐arc crossing. These observations suggest that the heating of plasmaspheric electrons via Coulomb collision with ring‐current ions is the most plausible mechanism for the SAR‐arc generation.

この論文で使われている画像

関連論文

参考文献

Allen, R. C., Zhang, J.‐C., Kistler, L. M., Spence, H. E., Lin, R.‐L., Klecker, B., et al. (2015). A statistical study of EMIC waves observed by cluster: 1. Wave properties. Journal of Geophysical Research: Space Physics, 120, 5574–5592.

Anderson, B. J., Erlandson, R. E., & Zanetti, L. J. (1992a). A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere:1. Equatorial occurrence distributions. Journal of Geophysical Research, 97, 3075–3088. https://doi.org/10.1029/91JA02706

Anderson, B. J., Erlandson, R. E., & Zanetti, L. J. (1992b). A statistical study of Pc 1–2 magnetic pulsations in the equatorial magnetosphere:2. Wave properties. Journal of Geophysical Research, 97(A3), 3089–3101. https://doi.org/10.1029/91JA02697

Anderson, P. C., Hanson, W. B., Coley, W. R., & Hoegy, W. R. (1994). Journal Geophysics Research, 99, 3985. https://doi.org/10.1029/ 93JA02104

Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King, D. A., et al. (2019). The space physics environment data analysis system (SPEDAS). Space Science Reviews, 215, 9. https://doi.org/10.1007/s11214-018-0576-4

Asamura, K., Kazama, Y., Yokota, S., Kasahara, S., & Miyoshi, Y. (2018). Low‐energy particle experiments‐ion mass analyzer (LEPi) onboard the ERG (Arase) satellite. Earth, Planets and Space, 70(1), 70. https://doi.org/10.1186/s40623-018-0846-0

Barbier, D. (1958). The auroral activity at low latitudes. Annals of Geophysics, 1, 4334–4355.

Burke, W. J., Gussenhoven, M. S., Kelley, M. C., Hardy, D. A., & Rich, F. J. (1982). Electric and magnetic field characteristics of discrete arcs in the polar cap. Journal of Geophysical Research, 87, 2431–2443. https://doi.org/10.1029/JA087iA04p02431

Chaston, C. C., Peticolas, L. M., Carlson, C. W., McFadden, J. P., Mozer, F., Wilber, M., et al. (2005). Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. Journal of Geophysical Research, 110, A02211. https://doi.org/10.1029/2004JA010483

Chen, L., Thorne, R. M., & Horne, R. H. (2009). Simulation of EMIC excitation in a model magnetosphere including structured high‐density plumes. Journal of Geophysical Research, 114, A07221. https://doi.org/10.1029/2009JA014204

Chu, X., Malaspina, D., Gallardo‐Lacourt, B., Liang, J., Andersson, L., Ma, Q., et al. (2019). Identifying STEVE's magnetospheric driver using conjugate observations in the magnetosphere and on the ground. Geophysical Research Letters, 46, 12,665–12,674. https://doi.org/ 10.1029/2019GL082789

Cole, K. (1965). Stable auroral red arcs, sinks for energy of Dst main phase. Journal of Geophysical Research, 70, 1689–1706. https://doi.org/ 10.1029/JZ070i007p01689

Collin, H. L., Quinn, J. M., & Cladis, J. B. (1993). An empirical static model of low energy ring‐current ions. Geophysical Research Letters, 20(2), 141–144. https://doi.org/10.1029/93GL00066

Cornwall, J. M., Coroniti, F. V., & Thorne, R. M. (1971). Unified theory of SAR arc formation at the plasmapause. Journal of Geophysical Research, 76, 4428–4445. https://doi.org/10.1029/JA076i019p04428

Coroniti, F. V., & Pritchett, P. L. (2014). The quiet evening auroral arc and the structure of the growth phase near‐Earth plasma sheet. Journal of Geophysical Research: Space Physics, 119, 1827–1836. https://doi.org/10.1002/2013JA019435

de Soria‐Santacruz, M., Spasojevic, M., & Chen, L. (2013). EMIC waves growth and guiding in the presence of cold plasma density irregularities. Geophysical Research Letters, 40, 1940–1944. https://doi.org/10.1002/grl.50484

Ejiri, M. (1978). Trajectory traces of charged particles in the magnetosphere. Journal of Geophysical Research, 83, 4798–4810. https://doi. org/10.1029/JA083iA10p04798

Fok, M.‐C., Kozyra, J. U., Nagy, A. F., & Cravens, T. E. (1991). Lifetime of ring current particles due to Coulomb collisions in the plasmasphere. Journal of Geophysical Research, 96(A5), 7861–7867. https://doi.org/10.1029/90JA02620

Foster, J. C., Buonsanto, M. J., Mendillo, M., Nottingham, D., Rich, F. J., & Denig, W. (1994). Coordinated stable auroral red arc observations: Relationship to plasma convection. Journal of Geophysical Research, 99, 11,429–11,439. https://doi.org/10.1029/93JA03140

Fraser, B. J., Horwitz, J. L., Slavin, J. A., Dent, Z. C., & Mann, I. R. (2005). Heavy ion mass loading of the geomagnetic field near the plasmapause and ULF wave implications. Geophysical Research Letters, 32, L04102. https://doi.org/10.1029/2004GL021315

Hasegawa, A., & Mima, K. (1978). Anomalous transport produced by kinetic Alfven wave turbulence. Journal of Geophysical Research, 83, 1117–1123. https://doi.org/10.1029/JA083iA03p01117

Horwitz, J. L., Comfort, R. H., Brace, L. H., & Chappell, C. R. (1986). Dual‐spacecraft measurements of plasmasphere‐ionosphere coupling. Journal of Geophysical Research, 91(A10), 11,203–11,216. https://doi.org/10.1029/JA091iA10p11203

Iyemori, T. (1990). Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations. Journal of Geomagnetism and Geoelectricity, 42(11), 1249–1265. https://doi.org/10.5636/jgg.42.1249

Iyemori, T., & Rao, D. R. K. (1996). Decay of the Dst field of geomagnetic disturbance after substorm onset and its implication to storm‐ substorm relation. Annales de Geophysique, 14(6), 608–618. https://doi.org/10.1007/s00585-996-0608-3

Jordanova, V. K., Kistler, L. M., Kozyra, J. U., Khazanov, G. V., & Nagy, A. F. (1996). Collisional losses of ring‐current ions. Journal of Geophysical Research, 101(A1), 111–126. https://doi.org/10.1029/95JA02000

Kasaba, Y., Ishisaka, K., Kasahara, Y., Imachi, T., Yagitani, S., Kojima, H., et al. (2017). Wire probe antenna (WPT) and electric field detector (EFD) of plasma wave experiment (PWE) aboard the Arase satellite: Specifications and initial evaluation results. Earth, Planets and Space, 69, 174. https://doi.org/10.1186/s40623-017-0760-x

Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., Ishisaka, K., Kumamoto, A., et al. (2018). The plasma wave experiment (PWE) onboard the Arase (ERG) satellite. Earth, Planets and Space, 70(1), 86. https://doi.org/10.1186/s40623-018-0842-4

Kazama, Y., Wang, B. J., Wang, S. Y., Ho, P. T. P., Tam, S. W. Y., Chang, T. F., et al. (2017). Low‐energy particle experiments‐electron analyzer (LEPe) onboard the Arase spacecraft. Earth, Planets and Space, 69, 165. https://doi.org/10.1186/s40623-017-0748-6

Knudsen, D. J., Burchill, J. K., Buchert, S. C., Eriksson, A. I., Gill, R., Wahlund, J.‐E., et al. (2017). Thermal ion imagers and Langmuir probes in the swarm electric field instruments. Journal of Geophysics Research: Space Physics, 122, 2655–2673. https://doi.org/10.1002/ 2016JA022571

Kozyra, J. U., Chandler, M. O., Hamilton, D. C., Peterson, W. K., Klumpar, D. M., Slater, D. W., et al. (1993). The role of ring current nose events in producing stable auroral red arc intensifications during the main phase: Observations during the September 19‐24, 1984 equinox transition study. Journal of Geophysical Research, 98, 9267. https://doi.org/10.1029/92JA02554

Kozyra, J. U., & Nagy, A. F. (1997). High‐altitude energy source(s) for stable auroral red arcs. Reviews of Geophysics, 35, 155, 96RG03194–190.

Kozyra, J. U., Shelley, E. G., Comfort, R. H., Brace, L. H., Cravens, T. E., & Nagy, A. F. (1987). The role of ring current O+ in the formation of stable auroral red arcs. Journal of Geophysical Research, 92, 7487–7502. https://doi.org/10.1029/JA092iA07p07487

Kozyra, J. U., Valladares, C. E., Carlson, H. C., Buonsanto, M. J., & Slater, D. W. (1990). A theoretical study of the seasonal and solar cycle variations of stable auroral red arcs. Journal of Geophysical Research, 95, 12219. https://doi.org/10.1029/JA095iA08p12219

Kumamoto, A., Tsuchiya, F., Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., et al. (2018). High frequency analyzer (HFA) of plasma wave experiment (PWE) onboard the Arase spacecraft. Earth, Planets and Space, 70(1), 82. https://doi.org/10.1186/s40623-018-0854-0

Lanzerotti, L. J., Hasagawa, A., & Maclennan, C. G. (1978). Hydromagnetic waves as a cause of a SAR arc event. Planetary and Space Science, 26, 777–783. https://doi.org/10.1016/0032-0633(78)90008-9

Lomidze, L., Knudsen, D. J., Burchill, J., Kouznetsov, A., & Buchert, S. C. (2018). Calibration and validation of swarm plasma densities and electron temperatures using ground‐based radars and satellite radio occultation measurements. Radio Science, 53, 15–36. https://doi. org/10.1002/2017RS006415

Lotoaniu, T. M., Fraser, B. J., & Waters, C. L. (2005). Propagation of electromagnetic ion cyclotron wave energy in the magnetosphere. Journal of Geophysical Research, 110, A07214. https://doi.org/10.1029/2004JA010816

Lysak, R. L., & Carlson, C. W. (1981). The effect of microscopic turbulence on magnetosphere‐ionosphere coupling. Geophysical Research Letters, 8, 269–272. https://doi.org/10.1029/GL008i003p00269

Marovich, E. (1966). Fritz peak observations of stable auroral red arcs, summary 1955‐1965, Tech. Rep., IER 16‐1TSA 16, 68 pp., NOAA, Boulder, Colo.

Martinis, C., Baumgardner, J., Mendillo, M., Taylor, M. J., Moffat‐Griffin, T., Wroten, J., et al. (2019). First ground‐based conjugate observations of stable auroral red (SAR) arcs. Journal of Geophysical Research: Space Physics, 124, 4658–4671. https://doi.org/10.1029/ 2018JA026017

Matsuoka, A., Teramoto, M., Nomura, R., Nosé, M., Fujimoto, A., Tanaka, Y., et al. (2018). The ARASE (ERG) magnetic field investigation. Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0800-1

McIlwain, C. E. (1961). Coordinates for mapping the distribution of magnetically trapped particles. Journal of Geophysical Research, 66(11), 3681–3691. https://doi.org/10.1029/JZ066i011p03681

Mendillo, M., Baumgardner, J., & Wroten, J. (2016). SAR arcs we have seen: Evidence for variability in stable auroral red arcs. Journal of Geophysical Research: Space Physics, 121, 245–262. https://doi.org/10.1002/2015JA021722

Mendillo, M., Baumgardner, J., Wroten, J., Martinis, C., Smith, S., Merenda, K.‐D., et al. (2013). Imaging magnetospheric boundaries at ionospheric heights. Journal of Geophysical Research: Space Physics, 118, 7294–7305. https://doi.org/10.1002/2013JA019267

Mendillo, M., & Wroten, J. (2019). Modeling stable auroral red (SAR) arcs at geomagnetic conjugate points: Implications for hemispheric asymmetries in heat fluxes. Journal of Geophysical Research: Space Physics, 124, 6330–6342. https://doi.org/10.1029/2019JA026904

Miyoshi, Y., Hori, T., Shoji, M., Teramoto, M., Chang, T. F., Matsuda, S., et al. (2018). The ERG science center. Earth, Planets and Space, 70(1), 96. https://doi.org/10.1186/s40623-018-0867-8

Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T., et al. (2018). Geospace exploration project ERG. Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0862-0,101

Nosé, M., Oimatsu, S., Keika, K., Kletzing, C. A., Kurth, W. S., Pascuale, S. D., et al. (2015). Formation of the oxygen torus in the inner magnetosphere: Van Allen probes observations. Journal of Geophysical Research: Space Physics, 120, 1182–1196. https://doi.org/10.1002/ 2014JA020593

Olsen, N., Stolle, C., Floberghagen, R., Hulot, G., & Kuvshinov, A. (2016). Special issue “swarm science results after 2 years in space”. Earth, Planets and Space, 68, 172. https://doi.org/10.1186/s40623-016-0546-6

Otsuka, Y., Ogawa, T., Saito, A., Tsugawa, T., Fukao, S., & Miyazaki, S. (2002). A new technique for mapping of total electron content using GPS network in Japan. Earth, Planets and Space, 54(1), 63–70. https://doi.org/10.1186/BF03352422

Prolss, G. W. (2006). Subauroral electron temperature enhancement in the nighttime ionosphere. Annales de Geophysique, 24, 1871–1885. https://doi.org/10.5194/angeo-24-1871-2006 Rees, M. H., & Roble, R. G. (1975). Observations and theory of the formation of stable auroral red arcs. Reviews of Geophysics and Space Physics, 13, 201–242. https://doi.org/10.1029/RG013i001p00201

Roach, F. E., & Roach, J. R. (1963). Stable 6300Å auroral arcs in midlatitudes. Planetary and Space Science, I1, 523–545.

Shiokawa, K., Hosokawa, K., Sakaguchi, K., Ieda, A., Otsuka, Y., Ogawa, T., & Connors, M. (2009). The optical mesosphere thermosphere imagers (OMTIs) for network measurements of aurora and airglow, future perspectives of space plasma and particle instrumentation and international collaborations. AIP Conference Proceedings, 1144, 212–215. https://doi.org/10.1063/1.3169292

Shiokawa, K., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki, M., et al. (2017). Ground‐based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG‐ground coordinated observation network. Earth, Planets and Space, 69(1), 160. https://doi.org/10.1186/s40623-017-0745-9

Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., & Ogawa, T. (2000). Integrating‐sphere calibration of all‐sky cameras for nightglow measurements. Advances in Space Research, 26, 1025–1028. https://doi.org/10.1016/S0273-1177(00)00052-1

Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., Ogawa, T., Nakamura, T., et al. (1999). Development of optical mesosphere thermosphere imagers (OMTI). Earth, Planets and Space, 51, 887–896. https://doi.org/10.1186/BF03353247

Shiokawa, K., Miyoshi, Y., Brandt, P. C., Evans, D. S., Frey, H. U., Goldstein, J., & Yumoto, K. (2013). Ground and satellite observations of low‐latitude red auroras at the initial phase of magnetic storms. Journal of Geophysical Research: Space Physics, 118, 256–270. https://doi. org/10.1029/2012JA018001

Shiokawa, K., Yumoto, K., Nishitani, N., Hayashi, K., Oguti, T., McEwen, D. J., et al. (1996). Quasi‐periodic poleward motions of sun‐ aligned auroral arcs in the high‐latitude morning sector: A case study. Journal of Geophysical Research, 101, 19,789–19,800. https://doi. org/10.1029/96JA01202

Smith, P. H., & Hoffman, R. A. (1973). Ring current particle distributions during the magnetic storms of December 16–18, 1971. Journal of Geophysical Research, 78(22), 4731–4737. https://doi.org/10.1029/JA078i022p04731

Smith, P. H., & Hoffman, R. A. (1974). Direct observations in the dusk hours of the characteristics of the storm time ring current particles during the beginning of magnetic storms. Journal of Geophysical Research, 79, 966–971. https://doi.org/10.1029/JA079i007p00966

Su, F., Wang, W., Burns, A. G., Yue, X., & Zhu, F. (2015). The correlation between electron temperature and density in the topside ionosphere during 2006–2009. Journal of Geophysical Research: Space Physics, 120, 10,724–10,739. https://doi.org/10.1002/2015JA021303

Takagi, Y., Shiokawa, K., Otsuka, Y., Connors, M., & Schofield, I. (2018). Statistical analysis of SAR arc detachment from the main oval based on 11‐year, all‐sky imaging observation at Athabasca, Canada. Geophysical Research Letters, 45, 11,539–11,546. https://doi.org/ 10.1029/2018GL079615

Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., et al. (2015). International geomagnetic reference field: The 12th generation. Earth, Planets and Space, 67, 79. https://doi.org/10.1186/s40623-015-0228-9

Tsyganenko, N. A. (2002a). A model of the near magnetosphere with a dawn‐dusk asymmetry 1. Mathematical structure. Journal of Geophysical Research, 107, 1–17.

Tsyganenko, N. A. (2002b). A model of the near magnetosphere with a dawn‐dusk asymmetry 2. Parameterization and fitting to observations. Journal of Geophysical Research, 107, 1–17.

Tsyganenko, N. A., & Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research, 110(A3), 1–16. https://doi.org/10.1029/2004JA010798

Vallat, C., Ganushkina, N., Dandouras, I., Escoubet, C. P., Taylor, M. G. G. T., Laakso, H., et al. (2007). Ion multi‐nose structures observed by cluster in the inner magnetosphere. Annales de Geophysique, 25, 171–190. https://doi.org/10.5194/angeo-25-171-2007

Wang, B., Li, P., Huang, J., & Zhang, B. (2019). Nonlinear Landau resonance between EMIC waves and cold electrons in the inner magnetosphere. Physics of Plasmas, 26, 042903. https://doi.org/10.1063/1.5088374

World Data Center for Geomagnetism, Kyoto, Nose, M., Iyemori, T., Sugiura, M., & Kamei, T. (2015). Geomagnetic AE index, https://doi. org/10.17593/15031-54800

Yokota, S., Kasahara, S., Mitani, T., Asamura, K., Hirahara, M., Takashima, T., et al. (2017). Medium‐energy particle experiments‐ion mass analyzer (MEP‐i) onboard ERG (Arase). Earth, Planets and Space, 69, 172. https://doi.org/10.1186/s40623-017-0754-8

Yuan, Z., Xiong, Y., Huang, S., Deng, X., Pang, Y., Zhou, M., et al. (2014). Cold electron heating by EMIC waves in the plasmaspheric plume with observations of the cluster satellite. Geophysical Research Letters, 41, 1830–1837. https://doi.org/10.1002/2014GL059241

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る