リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Contribution of Electron Pressure to Ring Current and Ground Magnetic Depression Using RAM‐SCB Simulations and Arase Observations During 7–8 November 2017 Magnetic Storm」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Contribution of Electron Pressure to Ring Current and Ground Magnetic Depression Using RAM‐SCB Simulations and Arase Observations During 7–8 November 2017 Magnetic Storm

Kumar, S. Miyoshi, Y. Jordanova, V. K. Engel, M. Asamura, K. Yokota, S. Kasahara, S. Kazama, Y. Wang, S.‐Y. Mitani, T. Keika, K. Hori, T. Jun, C. Shinohara, I. 名古屋大学

2021.06.11

概要

Understanding the physical processes that control the dynamics of energetic particles in the inner magnetosphere is important for both space-borne and ground-based assets essential to the modern society. The storm time distribution of ring current particles in the inner magnetosphere depends strongly on their transport in the evolving electric and magnetic fields along with particle acceleration and loss.

In this study, we investigated the ring current particle variations using observations and simulations.

We compared the ion (H+, He+, and O+) and electron flux and plasma pressure variations from Arase observations with the self-consistent inner magnetosphere model: Ring current Atmosphere interactions Model with Self Consistent magnetic field (RAM-SCB) during the 7–8 November 2017 geomagnetic storm. We investigated the contribution of the different species (ions and electrons) to the magnetic field deformation observed at ground magnetic stations (09°–45° MLat) using RAM-SCB simulations. The results show that the ions are the major contributor with ∼88% and electrons contribute ∼12% to the total ring current pressure. It is also found that the electron contribution is non-negligible (∼18%) to the ring current in dawn-side during the main phase of the storm. Thus, the electron contribution to the storm time ring current is important and should not be neglected.

この論文で使われている画像

関連論文

参考文献

Asamura, K., Kazama, Y., Yokota, S., Kasahara, S., & Miyoshi, Y. (2018). Low-energy particle experiments-ion mass analyzer (LEPi) on- board the ERG (Arase) satellite. Earth, Planets and Space, 70, 70. https://doi.org/10.1186/s40623-018-0846-0

Asamura, K., Miyoshi, Y., & Shinohara, I. (2018a). The LEPi instrument Level-2 3-D flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v03_00. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya Uni- versity. https://doi.org/10.34515/DATA.ERG-05001

Asamura, K., Miyoshi, Y., & Shinohara, I. (2018b). The LEPi instrument Level-2 omniflux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v03_00. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya Uni- versity. https://doi.org/10.34515/DATA.ERG-05000

Burton, R. K., McPherron, R. L., & Russell, C. T. (1975). An empirical relationship between interplanetary conditions and Dst. Journal of Geophysical Research, 80(31), 4204–4214. https://doi.org/10.1029/JA080i031p04204

Cao, X., Ni, B., Summers, D., Shprits, Y. Y., Gu, X., Fu, S., et al. (2019). Sensitivity of EMIC wave-driven scattering loss of ring current pro- tons to wave normal angle distribution. Geophysical Research Letters, 46, 590–598. https://doi.org/10.1029/2018GL081550

Cao, X., Ni, B., Summers, D., Shprits, Y. Y., & Lou, Y. (2020). Effects of polarization reversal on the pitch angle scattering of radiation belt elec- trons and ring current protons by EMIC waves. Geophysical Research Letters, 47, e2020GL089718. https://doi.org/10.1029/2020GL089718 Cornwall, J. M., Coroniti, F. V., & Thorne, R. M. (1970). Turbulent loss of ring current protons. Journal of Geophysical Research, 75(25),4699–4709. https://doi.org/10.1029/JA075i025p04699

Daglis, I. A., Sarris, E. T., & Wilken, B. (1993). AMPTE/CCE CHEM observations of the energetic ion population at geosynchronous alti- tudes. Annales Geophysicae, 11, 685–696.

Daglis, I. A., Thorne, R. M., Baumjohann, W., & Orsini, S. (1999). The terrestrial ring current: Origin, formation, and decay. Reviews of Geophysics, 37(4), 407–438. https://doi.org/10.1029/1999RG900009

Delcourt, D. C., Sauvaud, J. A., Martin, R. F., Jr., & Moore, T. E. (1996). On the nonadiabatic precipitation of ions from the near-earth plasma sheet. Journal of Geophysical Research, 101(A8), 17409–17418. https://doi.org/10.1029/96JA01006

De Michelis, P., Daglis, I. A., & Consolini, G. (1999). An average image of proton plasma pressure and of current systems in the equa- torial plane derived from AMPTE/CCE-CHEM measurements. Journal of Geophysical Research, 104(A12), 28615–28624. https://doi. org/10.1029/1999JA900310

Dessler, A. J., & Parker, E. N. (1959). Hydromagnetic theory of magnetic storms. Journal of Geophysical Research, 64, 2239–2252. https:// doi.org/10.1029/JZ064i012p02239

Dungey, J. W. (1961). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6(2), 47–48. https://doi.org/10.1103/ PhysRevLett.6.47

Ebihara, Y., & Ejiri, M. (2000). Simulation study on fundamental properties of the storm-time ring current. Journal of Geophysical Re- search, 105(A7), 15843–15859. https://doi.org/10.1029/1999JA900493

Ebihara, Y., Ejiri, M., Nilsson, H., Sandahl, I., Milillo, A., Grande, M., et al. (2002). Statistical distribution of the storm-time proton ring current: POLAR measurements. Geophysical Research Letters, 29(20), 1969. https://doi.org/10.1029/2002GL015430

Ebihara, Y., & Miyoshi, Y. (2011). Dynamic inner magnetosphere: A tutorial and recent advance. In W. Liu, & M. Fujimoto (Eds.), The dynamic magnetosphere (pp. 145–187). Springer. https://doi.org/10.1007/978-94-007-0501-2_9

Ebihara, Y., Yamada, M., Watanabe, S., & Ejiri, M. (2006). Fate of outflowing suprathermal oxygen ions that originate in the polar iono- sphere. Journal of Geophysical Research, 111, A04219. https://doi.org/10.1029/2005JA011403

Fok, M.-C., Moore, T. E., & Greenspan, M. E. (1996). Ring current development during storm main phase. Journal of Geophysical Research, 101(A7), 15311–15322. https://doi.org/10.1029/96JA01274

Fok, M.-C., Wolf, R. A., Spiro, R. W., & Moore, T. E. (2001). Comprehensive computational model of Earth's ring current. Journal of Geo- physical Research, 106(A5), 8417–8424. https://doi.org/10.1029/2000JA000235

Frank, L. A. (1967). On the extraterrestrial ring current during geomagnetic storms. Journal of Geophysical Research, 72(15), 3753–3767. https://doi.org/10.1029/JZ072i015p0375310.1029/jz072i015p03753

Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. (1994). What is a geomagnetic storm. Journal of Geophysical Research, 99, 5771–5792. https://doi.org/10.1029/93JA02867

Greenspan, M. E., & Hamilton, D. C. (2002). Relative contributions of H+ and O+ to the ring current energy near magnetic storm maxi- mum. Journal of Geophysical Research, 107(A4), 1043. https://doi.org/10.1029/2001JA000155

Hamilton, D. C., Gloeckler, G., Ipavich, F. M., Wilken, B., Stuedemann, W., & Kremser, G. (1988). Ring current development during the great geomagnetic storm of February 1986. Journal of Geophysical Research, 93(A12), 14343–14355. https://doi.org/10.1029/ JA093iA12p14343

Iijima, T., & Potemra, T. A. (1976). The amplitude distribution of field aligned currents at northern high latitudes observed by Triad. Jour- nal of Geophysical Research, 81(13), 2165–2174. https://doi.org/10.1029/JA081i013p02165

Imajo, S., Nosé, M., Aida, M., Higashio, N., Matsumoto, H., Kiyokazu, K., et al. (2020). Evolution of field-aligned current in the meridional plane during substorm: Multipoint observations from satellites and ground stations. Earth, Planets and Space, 72, 1–9. https://doi. org/10.1186/s40623-020-01182-6

Iyemori, T., Araki, T., Kamei, T., & Takeda, M. (1992). Mid-latitude geomagnetic indices ASY and SYM (Provisional) No. 1 1989. Data Anal- ysis Center for Geomagnetism and Space Magnetism, Kyoto University

Jahn, J. M., Goldstein, J., Reeves, G. D., Fernandes, P. A., Skoug, R. M., Larsen, B. A., & Spence, H. E. (2017). The warm plasma compo- sition in the inner magnetosphere during 2012–2015. Journal of Geophysical Research: Space Physics, 122, 11018–11043. https://doi. org/10.1002/2017ja02418310.1002/2017ja024183

Jordanova, V. K., Farrugia, C. J., Thorne, R. M., Khazanov, G. V., Reeves, G. D., & Thomsen, M. F. (2001). Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm. Journal of Geophysical Research, 106(A1), 7–22. https://doi.org/10.1029/2000JA002008

Jordanova, V. K., Ilie, R., & Chen, M. W. (2020). Introduction and historical background. In Ring current investigations: The quest for space weather prediction (pp. 1–13). Elsevier Inc. https://doi.org/10.1016/B978-0-12-815571-4.00001-9

Jordanova, V. K., Kistler, L. M., Kozyra, J. U., Khazanov, G. V., & Nagy, A. F. (1996). Collisional losses of ring current ions. Journal of Geo- physical Research, 101(A1), 111–126. https://doi.org/10.1029/95JA02000

Jordanova, V. K., Kozyra, J. U., Nagy, A. F., & Khazanov, G. V. (1997). Kinetic model of the ring current-atmosphere interactions. Journal of Geophysical Research, 102, 14279–14292. https://doi.org/10.1029/96JA03699

Jordanova, V. K., & Miyoshi, Y. S. (2005). Relativistic model of ring current and radiation belt ions and electrons: Initial results. Geophysical Research Letters, 32, L14104. https://doi.org/10.1029/2005GL023020

Jordanova, V. K., Miyoshi, Y. S., Zaharia, S., Thomsen, M. F., Reeves, G. D., Evans, D. S., et al. (2006). Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events. Journal of Geophysical Research, 111, A11S10. https://doi. org/10.1029/2006JA011644

Jordanova, V. K., Tu, W., Chen, Y., Morley, S. K., Panaitescu, A. -D., Reeves, G. D., & Kletzing, C. A. (2016). RAM-SCB simulations of elec- tron transport and plasma wave scattering during the October 2012 “double-dip” storm. Journal of Geophysical Research: Space Physics, 121, 8712–8727. https://doi.org/10.1002/2016JA022470

Jordanova, V. K., Welling, D. T., Zaharia, S. G., Chen, L., & Thorne, R. M. (2012). Modeling ring current ion and electron dynamics and plasma instabilities during a high-speed stream driven storm. Journal of Geophysical Research, 117, A00L08. https://doi. org/10.1029/2011JA017433

Jordanova, V. K., Yu, Y., Niehof, J. T., Skoug, R. M., Reeves, G. D., Kletzing, C. A., et al. (2014). Simulations of inner magnetosphere dy- namics with an expanded RAM-SCB model and comparisons with Van Allen Probes observations. Geophysical Research Letters, 41, 2687–2694. https://doi.org/10.1002/2014GL059533

Jordanova, V. K., Zaharia, S., & Welling, D. T. (2010). Comparative study of ring current development using empirical, dipolar, and self-con- sistent magnetic field simulations. Journal of Geophysical Research, 115, A00J11. https://doi.org/10.1029/2010JA015671

Kasahara, S., Yokota, S., Hori, T., Keika, K., Miyoshi, Y., & Shinohara, I. (2018). The MEP-e instrument Level-2 3-D flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v01_02. ERG Science Center, Institute for Space-Earth Environ- mental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-02000

Kasahara, S., Yokota, S., Hori, T., Keika, K., Miyoshi, Y., & Shinohara, I. (2018). The MEP-e instrument Level-2 omni-directional flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v01_02. ERG Science Center, Institute for Space- Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-02001

Kasahara, S., Yokota, S., Mitani, T., Asamura, K., Hirahara, M., Shibano, Y., & Takshima, T. (2018). Medium-energy particle experi- ments-electron analyzer (MEP-e) for the exploration of energization and radiation in geospace (ERG) mission. Earth, Planets and Space, 70, 69. https://doi.org/10.1186/s40623-018-0847-z

Kazama, Y., Wang, B. J., Wang, S. Y., Ho, P. T. P., Tam, S. W. Y., Chang, T. F., et al. (2017). Low-energy particle experiments-electron analyzer (LEPe) onboard the Arase spacecraft. Earth, Planets and Space, 69, 165. https://doi.org/10.1186/s40623-017-0748-6

Keika, K., Brandt, P. C., Nosé, M., & Mitchell, D. G. (2011). Evolution of ring current ion energy spectra during the storm recovery phase: Implication for dominant ion loss processes. Journal of Geophysical Research, 116, A00J20. https://doi.org/10.1029/2010JA015628

Keika, K., Kasahara, S., Yokota, S., Hoshino, M., Seki, K., Nosé, M., et al. (2018). Ion energies dominating energy density in the inner mag- netosphere: Spatial distributions and composition, observed by Arase/MEP-i. Geophysical Research Letters, 45, 12153–12162. https:// doi.org/10.1029/2018GL080047

Keika, K., Kistler, L. M., & Brandt, P. C. (2013). Energization of O+ ions in the Earth's inner magnetosphere and the effects on ring current buildup: A review of previous observations and possible mechanisms. Journal of Geophysical Research: Space Physics, 118, 4441–4464. https://doi.org/10.1002/jgra.50371

Keika, K., Nose, M., Brandt, P., Ohtani, S., Mitchell, D. G., & Roelof, E. C. (2006). Contribution of charge exchange loss to the storm time ring current decay: IMAGE/HENA observations. Journal of Geophysical Research, 111, A11S12. https://doi.org/10.1029/2006JA011789 Keika, K., Nose´, M., Ohtani, S.-I., Takahashi, K., Christon, S. P., & McEntire, R. W. (2005). Outflow of energetic ions from the magne- tosphere and its contribution to the decay of the storm time ring current. Journal of Geophysical Research, 110, A09210. https://doi.org/10.1029/2004JA010970

Kistler, L. M., Mouikis, C. G., Spence, H. E., Menz, A. M., Skoug, R. M., Funsten, H. O., et al. (2016). The source of O+ in the storm time ring current. Journal of Geophysical Research: Space Physics, 121, 5333–5349. https://doi.org/10.1002/2015JA022204

Kozyra, J. U., Rasmussen, C. E., Miller, R. H., & Lyons, L. R. (1994). Interaction of ring current and radiation belt protons with duct- ed plasmaspheric hiss: 1. Diffusion coefficients and timescales. Journal of Geophysical Research, 99(A3), 4069–4084. https://doi. org/10.1029/93JA01532

Kumar, S., Veenadhari, B., Chakrabarty, D., Tulasi Ram, S., Kikuchi, T., & Miyoshi, Y. (2020). Effects of IMF By on ring current asymmetry under southward IMF Bz conditions observed at ground magnetic stations: Case studies. Journal of Geophysical Research: Space Physics, 125, e2019JA027493. https://doi.org/10.1029/2019JA027493

Le, G., Russell, C. T., & Takahashi, K. (2004). Morphology of the ring current derived from magnetic field observations. Annales Geophys- icae, 22, 1267–1295. https://doi.org/10.5194/angeo-22-1267-2004

Li, H., Wang, C., & Kan, J. R. (2011). Contribution of the partial ring current to the SYMH index during magnetic storms. Journal of Geo- physical Research, 116, A11222. https://doi.org/10.1029/2011JA016886

Liemohn, M. W., Ganushkina, N. Y., Ilie, R., & Welling, D. T. (2016). Challenges associated with near-Earth nightside current. Journal of Geophysical Research: Space Physics, 121, 6763–6768. https://doi.org/10.1002/2016JA022948

Liemohn, M. W., Kozyra, J. U., Jordanova, V. K., Khazanov, G. V., Thomsen, M. F., & Cayton, T. E. (1999). Analysis of early phase ring current recovery mechanisms during geomagnetic storms. Geophysical Research Letters, 26(18), 2845–2848. https://doi. org/10.1029/1999GL900611

Liu, S., Chen, M. W., Roeder, J. L., Lyons, L. R., & Schulz, M. (2005). Relative contribution of electrons to the storm time total ring current energy content. Geophysical Research Letters, 32, L03110. https://doi.org/10.1029/2004GL021672

Mitani, T., Hori, T., Park, I., Takashima, T., Miyoshi, Y., & Shinohara, I. (2018). The HEP instrument Level-2 omni-directional flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite. https://doi.org/10.34515/DATA.ERG-01001

Mitani, T., Takashima, T., Kasahara, S., Miyake, W., & Hirahara, M. (2018). High-energy electron experiments (HEP) aboard the ERG (Arase) satellite. Earth, Planets and Space, 70, 77. https://doi.org/10.1186/s40623-018-0853-1

Miyoshi, Y., Shinohara, I., & Jun, C.-W. (2018). The level-2 orbit data of exploration of energization and radiation in Geospace (ERG) Arase satellite, version v03. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi. org/10.34515/DATA.ERG-12000

Miyoshi, Y. S., Hori, T., Shoji, M., Teramoto, M., Chang, T. F., Segawa, T., et al. (2018). The ERG science center. Earth, Planets and Space, 70(1), 1–11. https://doi.org/10.1186/s40623-018-0867-8

Miyoshi, Y. S., Jordanova, V. K., Morioka, A., Thomsen, M. F., Reeves, G. D., Evans, D. S., & Green, J. C. (2006). Observations and modeling of energetic electron dynamics during the Oct. 2001 storm. Journal of Geophysical Research, 111, A11S02. https://doi. org/10.1029/2005JA011351

Miyoshi, Y. S., & Kataoka, R. (2005). Ring current ions and radiation belt electrons during geomagnetic storms driven by coronal mass ejections and corotating interaction regions. Geophysical Research Letters, 32, L21105. https://doi.org/10.1029/2005GL024590

Miyoshi, Y. S., & Kataoka, R. (2008). Flux enhancement of the outer radiation belt electrons after the arrival of stream interaction regions.Journal of Geophysical Research, 113, A03S09. https://doi.org/10.1029/2007JA012506

Miyoshi, Y. S., Kataoka, R., Kasahara, Y., Kumamoto, A., Nagai, T., & Thomsen, M. (2013). High-speed solar wind with southward inter- planetary magnetic field causes relativistic electron flux enhancement of the outer radiation belt via enhanced condition of whistler waves. Geophysical Research Letters, 40, 4520–4525. https://doi.org/10.1002/grl.50916

Miyoshi, Y. S., Sakaguchi, K., Shiokawa, K., Evans, D., Albert, J., Connors, M., & Jordanova, V. (2008). Precipitation of radiation belt elec- trons by EMIC waves, observed from ground and space. Geophysical Research Letters, 35, L23101. https://doi.org/10.1029/2008GL035727 Miyoshi, Y. S., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T., et al. (2018). Geospace exploration project ERG. Earth,Planets and Space, 70, 101. https://doi.org/10.1186/s40623-018-0862-0

Nosé, M., Takahashi, K., Ohtani, S., Christon, S. P., & McEntire, R. W. (2005). Dynamics of ions of ionospheric origin during magnetic storms: Their acceleration mechanism and transport path to ring current. In T. I. Pulkkinen, N. A. Tsyganenko, & R. H. Friedel (Eds.), The inner magnetosphere: Physics and modeling (Geophys. Monogr. Ser., Vol. 155, pp. 61–71). https://doi.org/10.1029/155gm08

O'Brien, T. P., & McPherron, R. L. (2000). An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay. Journal of Geophysical Research, 105(A4), 7707–7719. https://doi.org/10.1029/1998JA000437

Sckopke, N. (1966). A general relation between the energy of trapped particles and the disturbance field near the Earth. Journal of Geo- physical Research, 71, 3125–3130. https://doi.org/10.1029/JZ071i013p03125

Sugiura, M. (1964). Hourly values of equatorial Dst for the IGY. Annals of the International Geophysical Year, 35, 9–45.

Sugiura, M., & Chapman, S. (1960). The average morphology of geomagnetic storms with sudden commencement (Abhandl. Akad. Wiss. Goettingen Math. Physik. Kl. 4, pp. 51–53). https://doi.org/10.1016/0038-092x(60)90024-4

Sugiura, M., & Kamei, T. (1991). Equatorial Dst index 1957–1986, IAGA Bull (Vol. 40). ISGI Pub. Office.

Summers, D., Ni, B., & Meredith, N. P. (2007). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. Journal of Geophysical Research, 112, A0427. https://doi.org/10.1029/2006JA011993

Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Guarnieri, F. L., Gopalswamy, N., Grande, M., et al. (2006). Corotating solar wind streams and recurrent geomagnetic activity: A review. Journal of Geophysical Research, 111, A07S01. https://doi.org/10.1029/2005JA011273 Tsyganenko, N. A. (1982). Pitch-angle scattering of energetic particles in the current sheet of the magnetospheric tail and stationary distri-bution functions. Planetary and Space Science, 30(5), 433–437. https://doi.org/10.1016/0032-0633(82)90052-6

Tsyganenko, N. A., & Sitnov, M. I. (2005). Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms. Journal of Geophysical Research, 110, A03208. https://doi.org/10.1029/2004JA010798

Turner, N. E., Baker, D. N., Pulkkinen, T. I., & McPherron, R. L. (2000). Evaluation of the tail current contribution to Dst. Journal of Geo- physical Research, 105(A3), 5431–5439. https://doi.org/10.1029/1999JA000248

Wang, S.-Y., Kazama, Y., Jun, C.-W., Chang, T.-F., Hori, T., Miyoshi, Y., & Shinohara, I. (2018a). The LEPe instrument level-2 3-D flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v02_02. ERG Science Center, Institute for Space- Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-04001

Wang, S.-Y., Kazama, Y., Jun, C.-W., Chang, T.-F., Hori, T., Miyoshi, Y., & Shinohara, I. (2018b). The LEPe instrument level-2 omni-direction- al flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v02_02. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-04002

Weimer, D. R. (2005). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophys- ical Research, 110, A05306. https://doi.org/10.1029/2004JA010884

Williams, D. J. (1981). Ring current composition and sources: An update. Planetary and Space Science, 29, 1195–1203. https://doi. org/10.1016/0032-0633(81)90124-0

Yokota, S., Kasahara, S., Hori, T., Keika, K., Miyoshi, Y., & Shinohara, I. (2018a). The MEP-i instrument Level-2 3-D flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v01_01. ERG Science Center, Institute for Space-Earth Environ- mental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-03000

Yokota, S., Kasahara, S., Hori, T., Keika, K., Miyoshi, Y., & Shinohara, I. (2018b). The MEP-i instrument Level-2 omni-directional flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v01_01. ERG Science Center, Institute for Space- Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-03001

Yokota, S., Kasahara, S., Mitani, T., Asamura, K., Hirahara, M., Takashima, T., et al. (2017). Medium-energy particle experiments–ion mass analyzer (MEP-i) onboard ERG (Arase). Earth, Planets and Space, 69(1), 172. https://doi.org/10.1186/s40623-017-0754-8

Young, D. T., Balsiger, H., & Geiss, J. (1982). Correlations of magnetospheric ion composition with geomagnetic and solar activity. Journal of Geophysical Research, 87(A11), 9077–9096. https://doi.org/10.1029/JA087iA11p09077

Young, S. L., Denton, R. E., Anderson, B. J., & Hudson, M. K. (2002). Empirical model for μ scattering caused by field line curvature in a realistic magnetosphere. Journal of Geophysical Research, 107(A6). https://doi.org/10.1029/2000JA000294

Young, S. L., Denton, R. E., Anderson, B. J., & Hudson, M. K. (2008). Magnetic field line curvature induced pitch angle diffusion in the inner magnetosphere. Journal of Geophysical Research, 113, A03210. https://doi.org/10.1029/2006JA012133

Yu, Y., Jordanova, V., Zaharia, S., Koller, J., Zhang, J., & Kistler, L. M. (2012). Validation study of the magnetically self-consistent inner magnetosphere model RAM-SCB. Journal of Geophysical Research, 117, A03222. https://doi.org/10.1029/2011JA017321

Yu, Y., Jordanova, V. K., Ridley, A. J., Toth, G., & Heelis, R. (2017). Effects of electric field methods on modeling the midlatitude ionospher- ic electrodynamics and inner magnetosphere dynamics. Journal of Geophysical Research: Space Physics, 122, 5321–5338. https://doi. org/10.1002/2016ja023850

Yu, Y., Ridley, A. J., Welling, D. T., & Tóth, G. (2010). Including gap region field-aligned currents and magnetospheric currents in the MHD calculation of ground-based magnetic field perturbations. Journal of Geophysical Research, 115, A08207. https://doi. org/10.1029/2009JA014869

Yu, Y., Tian, X., & Jordanova, V. K. (2020). The effects of field line curvature (FLC) scattering on ring current dynamics and isotropic boundary. Journal of Geophysical Research: Space Physics, 125, e2020JA027830. https://doi.org/10.1029/2020JA027830

Yue, C., Zong, Q., Wang, Y., Vogiatzis, I. I., Pu, Z., Fu, S., & Shi, Q. (2011). Inner magnetosphere plasma characteristics in response to inter- planetary shock impacts. Journal of Geophysical Research, 116, A11206. https://doi.org/10.1029/2011JA016736

Zaharia, S., Cheng, C., & Maezawa, K. (2004). 3-D force-balanced magnetospheric configurations. Annales Geophysicae, 22, 251–265. https://doi.org/10.5194/angeo-22-251-2004

Zaharia, S., Jordanova, V. K., Thomsen, M. F., & Reeves, G. D. (2006). Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm. Journal of Geophysical Research, 111, A11S14. https://doi. org/10.1029/2006JA01161910.1029/2006ja011619

Zhao, H., Li, X., Baker, D. N., Claudepierre, S. G., Fennell, J. F., Blake, J. B., et al. (2016). Ring current electron dynamics during geomag- netic storms based on the Van Allen Probes measurements. Journal of Geophysical Research: Space Physics, 121, 3333–3346. https://doi. org/10.1002/2016JA022358

Zhao, H., Zhao, H., Li, X., Baker, D. N., Fennell, J. F., Blake, J. B., et al. (2015). The evolution of ring current ion energy density and energy content during geomagnetic storms based on Van Allen Probes measurements. Journal of Geophysical Research: Space Physics, 120, 7493–7511. https://doi.org/10.1002/2015JA021533

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る