リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Flux Enhancements of Field-Aligned Low-Energy O^+ Ion (FALEO) in the Inner Magnetosphere: A Possible Source of Warm Plasma Cloak and Oxygen Torus」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Flux Enhancements of Field-Aligned Low-Energy O^+ Ion (FALEO) in the Inner Magnetosphere: A Possible Source of Warm Plasma Cloak and Oxygen Torus

Nosé, M. Matsuoka, A. Miyoshi, Y. Asamura, K. Hori, T. Teramoto, M. Shinohara, I. Hirahara, M. Kletzing, C. A. Smith, C. W. MacDowall, R. J. Spence, H. E. Reeves, G. D. Gjerloev, J. W. 名古屋大学

2022.03

概要

Flux enhancements of field-aligned low-energy O^+ ion (FALEO) are simultaneously observed by Arase, Van Allen Probes A and B in the nightside inner magnetosphere during 05–07 UT on September 22, 2018. FALEOs appear after a magnetic dipolarization signature with approximately 6–20 min delay. It has the energy-dispersion signature from a few keV to ∼100 eV only in the direction parallel to the magnetic field at Arase, while it decreases its energy from a few keV down to 10 eV in both the parallel and antiparallel directions at Probes A and B. We perform a numerical simulation to trace trajectories of test O^+ ions in a model magnetosphere, which are launched from above the ionosphere 3–15 min after a substorm. Flying virtual satellites that have the same orbits as the real satellites, we create virtual energy-time spectrograms of O^+ ions to compare with the observed ones. Results show a very good correspondence between them, indicating that FALEOs originate from ionospheric O^+ ions that are extracted from the upper ionosphere at substorm onset and flow along the magnetic field toward the geomagnetic equator. It is also revealed that 3–9 hr after their launch, test O^+ ions less than 400 eV have a spatial distribution in the inner magnetosphere which is similar to those of the warm plasma cloak and the oxygen torus. We therefore conclude that FALEO is a source of those cold ion populations.

この論文で使われている画像

関連論文

参考文献

Alken, P., Thébault, E., Beggan, C. D., Amit, H., Aubert, J., Baerenzung, J., et al. (2021). International Geomagnetic Reference Field: The thirteenth generation. Earth Planets and Space, 73, 49. https://doi.org/10.1186/s40623-020-01288-x

Asamura, K., Kazama, Y., Yokota, S., Kasahara, S., & Miyoshi, Y. (2018). Low-energy particle experiments-ion mass analyzer (LEPi) onboard the ERG (Arase) satellite. Earth Planets and Space, 70, 70. https://doi.org/10.1186/s40623-018-0846-0

Asamura, K., Miyoshi, Y., & Shinohara, I. (2018). The LEPi instrument Level-2 3D flux data of exploration of energization and radiation in Geospace (ERG) Arase satellite, Version v03_00. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-05000

Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., Belian, R. D., & Hesse, M. (1997). Substorm ion injections: Geosynchronous observations and test particle orbits in three-dimensional dynamic MHD fields. Journal of Geophysical Research, 102(A2), 2325– 2341. https://doi.org/10.1029/96JA03032

Birn, J., Thomsen, M. F., Borovsky, J. E., Reeves, G. D., McComas, D. J., Belian, R. D., & Hesse, M. (1998). Substorm electron injections: Geosynchronous observations and test particle simulations. Journal of Geophysical Research, 103(A5), 9235–9248. https://doi.org/10.1029/97JA02635

Borovsky, J. E., & Yakymenko, K. (2017). Substorm occurrence rates, substorm recurrence times, and solar wind structure. Journal of Geophysical Research, 122, 2973–2998. https://doi.org/10.1002/2016JA023625

Chappell, C. R. (1982). Initial observations of thermal plasma composition and energetics from Dynamics Explorer-1. Geophysical Research Letters, 9(9), 929–932. https://doi.org/10.1029/GL009i009p00929

Chappell, C. R., Huddleston, M. M., Moore, T. E., Giles, B. L., & Delcourt, D. C. (2008). Observations of the warm plasma cloak and an explanation of its formation in the magnetosphere. Journal of Geophysical Research, 113, A09206. https://doi.org/10.1029/2007JA012945

Chaston, C. C., Bonnell, J. B., Carlson, C. W., McFadden, J. P., Ergun, R. E., & Lund, E. J. (2004). Auroral ion acceleration in dispersive Alfvén waves. Journal of Geophysical Research, 109, A04205. https://doi.org/10.1029/2003JA010053

Chaston, C. C., Bonnell, J. W., Wygant, J. R., Kletzing, C. A., Reeves, G. D., Gerrard, A., et al. (2015). Extreme ionospheric ion energization and electron heating in Alfvén waves in the storm time inner magnetosphere. Geophysical Research Letters, 42, 10531–10540. https://doi.org/10.1002/2015GL066674

Chaston, C. C., Peticolas, L. M., Carlson, C. W., McFadden, J. P., Mozer, F., Wilberand, M., et al. (2005). Energy deposition by Alfvén waves into the dayside auroral oval: Cluster and FAST observations. Journal of Geophysical Research, 110, A02211. https://doi.org/10.1029/2004JA010483

Comfort, R. H., Newberry, I. T., & Chappell, C. R. (1988). Preliminary statistical survey of plasmaspheric ion properties from observations by

DE 1/RIMS. In T. E.Moore, J. H.Waite, T. W.Moorehead, & W. B.Hanson (Eds.), Modeling magnetospheric plasma. Geophysical Monograph Series (Vol. 44, pp. 107–114). American Geophysical Union. https://doi.org/10.1029/GM044p0107

Delcourt, D. C., Sauvaud, J. A., & Pedersen, A. (1990). Dynamics of single-particle orbits during substorm expansion phase. Journal of Geophysical Research, 95(A12), 20853–20865. https://doi.org/10.1029/JA095iA12p20853

Delzanno, G. L., Borovsky, J. E., Henderson, M. G., Lira, P. A. R., Roytershteyn, V., & Welling, D. T. (2021). The impact of cold electrons and cold ions in magnetospheric physics. Journal of Atmospheric and Solar-Terrestrial Physics, 220, 105599. https://doi.org/10.1016/j.jastp.2021.105599

Fernandes, P. A., Larsen, B. A., Thomsen, M. F., Skoug, R. M., Reeves, G. D., Denton, M. H., et al. (2017). The plasma environment inside geostationary orbit: A Van Allen Probes HOPE survey. Journal of Geophysical Research: Space Physics, 122, 9207–9227. https://doi.org/10.1002/2017JA024160

Foster, J. C., & Erickson, P. J. (2021). Van Allen Probes observations of oxygen ions at the geospace plume. Frontiers in Astronomy and Space Sciences, 8, 705637. https://doi.org/10.3389/fspas.2021.705637

Funsten, H. O., Skoug, R. M., Guthrie, A. A., MacDonald, E. A., Baldonado, J. R., Harper, R. W., et al. (2013). Helium, oxygen, proton, and electron (HOPE) mass spectrometer for the Radiation Belt storm Probes mission. Space Science Reviews, 179, 423–484. https://doi.org/10.1007/s11214-013-9968-7

Fuselier, S. A., Collin, H. L., Ghielmetti, A. G., Claflin, E. S., Moore, T. E., Collier, M. R., et al. (2002). Localized ion outflow in response to a solar wind pressure pulse. Journal of Geophysical Research, 107(A8), 1203. https://doi.org/10.1029/2001JA000297

Gjerloev, J. W. (2012). The SuperMAG data processing technique. Journal of Geophysical Research, 117, A09213. https://doi.org/10.1029/2012JA017683

Gkioulidou, M., Ohtani, S., Ukhorskiy, A. Y., Mitchell, D. G., Takahashi, K., Spence, H. E., et al. (2019). Low-energy (<keV) O+ ion outflow directly into the inner magnetosphere: Van Allen Probes observations. Journal of Geophysical Research: Space Physics, 124, 405–419. https:// doi.org/10.1029/2018JA025862

Horwitz, J. L., Comfort, R. H., Brace, L. H., & Chappell, C. R. (1986). Dual-spacecraft measurements of plasmasphere-ionosphere coupling.

Journal of Geophysical Research, 91(A10), 11203–11216. https://doi.org/10.1029/JA091iA10p11203

Horwitz, J. L., Comfort, R. H., & Chappell, C. R. (1984). Thermal ion composition measurements of the formation of the new outer plasmasphere and double plasmapause during storm recovery phase. Geophysical Research Letters, 11(8), 701–704. https://doi.org/10.1029/GL011i008p00701

Horwitz, J. L., Comfort, R. H., Richards, P. G., Chandler, M. O., Chappell, C. R., Anderson, P., et al. (1990). Plasmasphere-ionosphere coupling 2: Ion composition measurements at plasmaspheric and ionospheric altitudes and comparison with modeling results. Journal of Geophysical Research, 95(A6), 7949–7959. https://doi.org/10.1029/JA095iA06p07949

Hull, A. J., Chaston, C. C., Bonnell, J. W., Damiano, P. A., Wygant, J. R., & Reeves, G. D. (2020). Correlations between dispersive Alfvén wave activity, electron energization, and ion outflow in the inner magnetosphere. Geophysical Research Letters, 47, e2020GL088985. https://doi.org/10.1029/2020GL088985

Hull, A. J., Chaston, C. C., Bonnell, J. W., Wygant, J. R., Kletzing, C. A., Reeves, G. D., & Gerrard, A. (2019). Dispersive Alfvén wave control of O+ ion outflow and energy densities in the inner magnetosphere. Geophysical Research Letters, 46, 8597–8606. https://doi.org/10.1029/2019GL083808

Iyemori, T., Araki, T., Kamei, T., & Takeda, M. (1992). Mid-latitude geomagnetic indices ASY and SYM (provisional), no. 1, 1989–1990. In Data analysis center for geomagnetism and space magnetism. Kyoto University.

Jahn, J.-M., Goldstein, J., Reeves, G. D., Fernandes, P. A., Skoug, R. M., Larsen, B. A., & Spence, H. E. (2017). The warm plasma composition in the inner magnetosphere during 2012–2015. Journal of Geophysical Research: Space Physics, 122, 11018–11043. https://doi.org/10.1002/2017JA024183

Khan, H., Collier, M. R., & Moore, T. E. (2003). Case study of solar wind pressure variations and neutral atom emissions observed by IMAGE/LENA. Journal of Geophysical Research, 108(A12), 1422. https://doi.org/10.1029/2003JA009977

Kistler, L. M., Mouikis, C. G., Spence, H. E., Menz, A. M., Skoug, R. M., Funsten, H. O., et al. (2016). The source of O+ in the storm time ring current. Journal of Geophysical Research: Space Physics, 121, 5333–5349. https://doi.org/10.1002/2015JA022204

Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., et al. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Science Reviews, 179(1–4), 127–181. https://doi.org/10.1007/s11214-013-9993-6

Lee, J. H., & Angelopoulos, V. (2014). On the presence and properties of cold ions near Earth's equatorial magnetosphere. Journal of Geophysical Research: Space Physics, 119, 1749–1770. https://doi.org/10.1002/2013JA019305

Matsuoka, A., Teramoto, M., Imajo, S., Kurita, S., Miyoshi, Y., & Shinohara, I. (2018). The MGF instrument Level-2 spin-fit magnetic field dataof Exploration of energization and Radiation in Geospace (ERG) Arase satellite, Version v03.04. ERG Science Center, Institute for SpaceEarth Environmental Research, Nagoya University. https://doi.org/10.34515/DATA.ERG-06001

Matsuoka, A., Teramoto, M., Nomura, R., Nosé, M., Fujimoto, A., Tanaka, Y., et al. (2018). The Arase (ERG) magnetic field investigation. Earth Planets and Space, 70, 43. https://doi.org/10.1186/s40623-018-0800-1

Matzka, J., Bronkalla, O., Tornow, K., Elger, K., & Stolle, C. (2021). Geomagnetic Kp index. V. 1.0. GFZ Data Services. https://doi.org/10.5880/Kp.0001

Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., & Morschhauser, A. (2021). The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather, 19, e2020SW002641. https://doi.org/10.1029/2020SW002641

Mauk, B. H. (1986). Quantitative modeling of the “convection surge” mechanism of ion acceleration. Journal of Geophysical Research, 91(A12), 13423–13431. https://doi.org/10.1029/JA091iA12p13423

Mauk, B. H., Fox, N. J., Kanekal, S. G., Kessel, R. L., Sibeck, D. G., & Ukhorskiy, A. (2013). Science objectives and rationale for the Radiation Belt storm Probes mission. Space Science Reviews, 179(1–4), 3–27. https://doi.org/10.1007/s11214-012-9908-y

Maynard, N. C., & Chen, A. J. (1975). Isolated cold plasma regions—Observations and their relation to possible production mechanisms. Journal of Geophysical Research, 80, 1009–1013. https://doi.org/10.1029/JA080i007p01009

Miyoshi, Y., Hori, T., Shoji, M., Teramoto, M., Chang, T.-F., Segawa, T., et al. (2018). The ERG science center. Earth Planets and Space, 70, 96. https://doi.org/10.1186/s40623-018-0867-8

Miyoshi, Y., Shinohara, I., & Jun, C.-W. (2018). The Level-2 orbit data of Exploration of energization and Radiation in geospace (ERG) Arase satellite, Version v03. ERG Science Center, Institute for Space-Earth Environmental Research, Nagoya University. https://doi.org/10.34515/ DATA.ERG-12000

Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T., et al. (2018). Geospace Exploration Project ERG. Earth Planets and Space, 70, 101. https://doi.org/10.1186/10.1186/s40623-018-0862-0

Möbius, E., Scholer, M., Klecker, B., Hovestadt, D., Gloeckler, G., & Ipavich, F. M. (1987). Acceleration of ions of ionospheric origin in the plasma sheet during substorm activity. In A. T. Y. Lui (Ed.), Magnetotail physics (pp. 231–234).

Morley, S. K., Rouillard, A. P., & Freeman, M. P. (2009). Recurrent substorm activity during the passage of a corotating interaction region. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 1073–1081. https://doi.org/10.1016/j.jastp.2008.11.009

Nagai, T. (1991). An empirical model of substorm-related magnetic field variations at synchronous orbit. In J. R.Kan, T. A.Potemra, S.Kokubun, & T.Iijima (Eds.), Magnetospheric substorms (pp. 91–95). https://doi.org/10.1029/GM064p0091

Nagai, T., Ondoh, T., Matsumoto, H., Goka, T., Fukuda, T., Nosé, M., et al. (1996). ETS-VI magnetic field observations of the near-Earth magnetotail during substorms. Journal of Geomagnetism and Geoelectricity, 48, 741–748. https://doi.org/10.5636/jgg.48.741

Newell, P. T., & Gjerloev, J. W. (2011a). Evaluation of SuperMAG auroral electrojet indices as indicators of substorms and auroral power. Journal of Geophysical Research, 116, A12211. https://doi.org/10.1029/2011JA016779

Newell, P. T., & Gjerloev, J. W. (2011b). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. Journal of Geophysical Research, 116, A12232. https://doi.org/10.1029/2011JA016936

Nosé, M., Iyemori, T., Wang, L., Hitchman, A., Matzka, J., Feller, M., et al. (2012). Wp index: A new substorm index derived from high-resolution geomagnetic field data at low latitude. Space Weather, 10, S08002. https://doi.org/10.1029/2012SW000785

Nosé, M., Keika, K., Kletzing, C. A., Spence, H. E., Smith, C. W., MacDowall, R. J., et al. (2016). Van Allen Probes observations of magnetic field dipolarization and its associated O+ flux variations in the inner magnetosphere at L < 6.6. Journal of Geophysical Research: Space Physics, 121, 7572–7589. https://doi.org/10.1002/2016JA022549

Nosé, M., Matsuoka, A., Kumamoto, A., Kasahara, Y., Goldstein, J., Teramoto, M., et al. (2018). Longitudinal structure of oxygen torus in the inner magnetosphere: Simultaneous observations by Arase and Van Allen Probe A. Geophysical Research Letters, 45, 10177–10184. https://doi.org/10.1029/2018GL080122

Nosé, M., Matsuoka, A., Kumamoto, A., Kasahara, Y., Teramoto, M., Kurita, S., et al. (2020). Oxygen torus and its coincidence with EMIC wave in the deep inner magnetosphere: Van Allen Probe B and Arase observations. Earth Planets and Space, 72, 111. https://doi.org/10.1186/ s40623-020-01235-w

Nosé, M., Matsuoka, A., Miyoshi, Y., Asamura, K., Hori, T., Teramoto, M., et al. (2021). Field-aligned low-energy O+ flux enhancements in the inner magnetosphere observed by Arase. Journal of Geophysical Research, 126, e2021JA029168. https://doi.org/10.1002/2021JA029168

Nosé, M., Taguchi, S., Christon, S. P., Collier, M. R., Moore, T. E., Carlson, C. W., & McFadden, J. P. (2009). Response of ions of ionospheric origin to storm time substorms: Coordinated observations over the ionosphere and in the plasma sheet. Journal of Geophysical Research, 114, A05207. https://doi.org/10.1029/2009JA014048

Nosé, M., Takahashi, K., Anderson, R. R., & Singer, H. J. (2011). Oxygen torus in the deep inner magnetosphere and its contribution to recurrent process of O+-rich ring current formation. Journal of Geophysical Research, 116, A10224. https://doi.org/10.1029/2011JA016651

Ogawa, Y., Sawatsubashi, M., Buchert, S. C., Hosokawa, K., Taguchi, S., Nozawa, S., et al. (2013). Relationship between auroral substorm and ion upflow in the nightside polar ionosphere. Journal of Geophysical Research: Space Physics, 118, 7426–7437. https://doi.org/10.1002/2013JA018965

Roberts, W. T., Jr., Horwitz, J. L., Comfort, R. H., Chappell, C. R., Waite, J. H., Jr., & Green, J. L. (1987). Heavy ion density enhancements in the outer plasmasphere. Journal of Geophysical Research, 92(A12), 13499–13512. https://doi.org/10.1029/JA092iA12p13499

Sánchez, E. R., Mauk, B. H., & Meng, C.-I. (1993). Adiabatic vs. non-adiabatic particle distributions during convection surges. Geophysical Research Letters, 20, 177–180. https://doi.org/10.1029/93GL00237

Shen, Y., & Knudsen, D. J. (2020). On O+ ion heating by BBELF waves at low altitude: Test particle simulations. Journal of Geophysical Research: Space Physics, 125, e2019JA027291. https://doi.org/10.1029/2019JA027291

Spence, H. E., Reeves, G. D., Baker, D. N., Blake, J. B., Bolton, M., Bourdarie, S., et al. (2013). Science goals and overview of the radiation belt storm probes (RBSP) Energetic particle, composition, and thermal plasma (ECT) suite on NASA’s Van Allen Probes mission. Space Science Reviews, 179, 311–336. https://doi.org/10.1007/s11214-013-0007-5

Stern, D. P. (1975). The motion of a proton in the equatorial magnetosphere. Journal of Geophysical Research, 80, 595–599. https://doi.org/10.1029/JA080i004p00595

Strangeway, R. J., Ergun, R. E., Su, Y.-J., Carlson, C. W., & Elphic, R. C. (2005). Factors controlling ionospheric outflows as observed at intermediate altitudes. Journal of Geophysical Research, 110, A03221. https://doi.org/10.1029/2004JA010829

Strangeway, R. J., Russell, C. T., Carlson, C. W., McFadden, J. P., Ergun, R. E., Temerin, M., et al. (2000). Cusp field-aligned currents and ion outflows. Journal of Geophysical Research, 105(A9), 21129–21141. https://doi.org/10.1029/2000JA900032

Tsyganenko, N. A. (1989). A magnetospheric magnetic field model with a warped tail current sheet. Planetary and Space Science, 37, 5–20. https://doi.org/10.1016/0032-0633(89)90066-4

Volland, H. (1973). A semiempirical model of large-scale magnetospheric electric fields. Journal of Geophysical Research, 78(1), 171–180. https://doi.org/10.1029/JA078i001p00171

Wang, C.-P., Zaharia, S. G., Lyons, L. R., & Angelopoulos, V. (2013). Spatial distributions of ion pitch angle anisotropy in the near-Earth magnetosphere and tail plasma sheet. Journal of Geophysical Research: Space Physics, 118, 244–255. https://doi.org/10.1029/2012JA018275

World Data Center for Geomagnetism, Kyoto, & Nosé, M. (2016). Geomagnetic Wp index. https://doi.org/10.17593/13437-46800

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る