リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「中赤外レーザ光を用いた生体組織分析用ATR法の測定精度向上に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

中赤外レーザ光を用いた生体組織分析用ATR法の測定精度向上に関する研究

小山 卓耶 東北大学

2021.03.25

概要

糖尿病をはじめとした生活習慣病の診断・予防のため,糖質,脂質,タンパク質などの血中成分を非侵襲的に測定するシステムが望まれている.本論文では,従来のフーリエ変換赤外分光法に代わる,量子カスケードレーザ(QCL)を用いた減衰全反射分光(ATR)法による中赤外分光システムを提案した.まず,単一波長 QCL,ZnS 台形プリズム,および中空光ファイバから構成される ATR システムを構築した.グルコースの吸収を反映する波長を選択し,波長の異なる2つの QCLを用いることで,口唇粘膜から血糖値を測定できる可能性を示した.また,波長掃引が可能な小型 QCL を利用したシステムを構築した.パルス発振 QCL から得られるくし型のスペクトルを積算することで,簡易に連続スペクトルを得る手法を開発し,低濃度のグルコース水溶液と口唇粘膜の吸収スペクトルを,高い SN 比で測定できることを確認した.

次に,生体測定の精度向上のため,プリズム表面の光強度分布について精査した.レーザの小さなビーム拡がりや直進性により,プリズム表面に局所的に高い光強度の点が現れることを確認した.そこで,プリズム上の強度分布を均一化するため,ファイバ内に複数の高次モードを励起可能なように,短焦点のレンズを入射系に導入し,またプリズム内で反射回数を増加させるためにプリズムへの入射角を変更した.これらの改善により,プリズム上の強度分布が均一化され,生体測定の誤差が減少することを確認した.また,反射回数や試料への光侵入長が増大したことで感度が向上し,QCL の使用に適した ATR システムを設計することに成功した.

この論文で使われている画像

参考文献

[1] K. Ogurtsova, J. D. da Rocha Fernandes, Y. Huang, U. Linnenkamp, L. Guariguata, N. H. Cho, D. Cavan, J. E. Shaw, L. E. Makaroff, “IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040.,” Diabetes Res. Clin. Pr., 128, 40–50 (2017). [DOI: 10.1016/j.diabres.2017.03.024]

[2] L. Kopin, C. J. Lowenstein, “Dyslipidemia.,” Ann. Intern. Med, 167, ITC81–ITC96 (2017). [DOI: 10.7326/AITC201712050]

[3] Y. Zheng, S. H. Ley, and F. B. Hu, “Global aetiology and epidemiology of type 2 diabetes mellitus and its complications.,” Nat. Rev. Endocrinol., 14, 88 (2018). [DOI: 10.1038/nrendo.2017.151]

[4] S. K. Vashist, “Non-Invasive glucose monitoring technology in diabetes management: a review.,” Anal. Chim. Acta, 750, 16–27 (2012). [DOI: 10.1016/j.aca.2012.03.043]

[5] N.S. Oliver, C. Toumazou, A. E. Cass, D. G. Johnston, “Glucose sensors: a review of current and emerging technology.,” Diabetic Med., 26, 197–210 (2009). [DOI: 10.1111/j.1464-5491.2008.02642.x]

[6] C. So, K. Choi, T. K. Wong, J. W Chung, “Recent advances in noninvasive glucose monitoring.,” Med. Devices (Auckl), 5, 45–52 (2012). [DOI: 10.2147/MDER.S28134]

[7] V. R. Kondepati, H. M. Heise, “Recent progress in analytical instrumentation for glycemic control in diabetic and critically ill patients.,” Anal. Bioanal. Chem, 388, 545–563 (2007). [DOI: 10.1007/s00216-007-1229-8]

[8] Y. Tanaka, T. Tajima, M. Seyama, K. Waki, “Differential continuous wave photoacoustic spectroscopy for non-invasive glucose monitoring.,” IEEE Sens. J., 20, 4453–4458 (2020). [DOI: 10.1109/JSEN.2019.2962251]

[9] V. P. Rachim, W. Chung, “Wearable-band type visible-near infrared optical biosensor for non-invasive blood glucose monitoring.,” Sensor. Actuat. B-Chem., 286, 173–180 (2019). [DOI: 10.1016/j.snb.2019.01.121]

[10] J. Yadav, A. Rani, V. Singh, B. M. Murari, “Prospects and Limitations of Non-Invasive Blood Glucose Monitoring Using Near-infrared Spectroscopy.,” Biomed. Signal. Proces., 18, 214–217 (2015). [DOI: 10.1016/j.bspc.2015.01.005]

[11] I. K. Ilev, R. W. Waynant, “Mid-infrared biomedical applications.,” in Mid-Infrared Semiconductor Optoelectronics, A. Krier, ed. (Springer: London, 2006), Volume 118, pp. 615–634. [DOI: 10.1007/1-84628-209-8_19]

[12] P. Lasch, J. Kneipp, Biomedical Vibrational Spectroscopy. John Wiley & Sons, New York, USA, (2007). [DOI: 10.1002/9780470283172]

[13] D. Hofstetter, J. Faist, “High performance quantum cascade lasers and their applica- tions.,” in Solid-State Mid-Infrared Laser Sources. I. T. Sorokina, K. L. Vodopyanov, eds. (Springer: Berlin, Heidelberg, 2003), Volume 89, pp. 61–89. [DOI: 10.1007/3-540- 36491-9_2]

[14] A. Godard, “Infrared (2-12 μm) solid-state laser sources: a review.,” C. R. Phys., 8, 1100–1128 (2007). [DOI: 10.1016/j.crhy.2007.09.010]

[15] J. D. Kim, S. Kim, D. Wu, J. Wojkowski, J. Xu, J. Piotrowski, E. Bigan, M. Razeghi, “8–13 μmInAsSb heterojunction photodiode operating at near room temperature.,” Appl. Phys. Lett., 67, 2645–2647 (1995). [DOI: 10.1063/1.114323]

[16] O. A. Bibikova, V. Mironovich, I. Usenov, E. Feliksberger, A. Bocharnikov, A. Surkova, V. Belikova, E. Nippolainen, I. Afara, J. Haas, et al., “Mid-infrared fiber spectroscopy for detection of cartilage degeneration in osteoarthritis.,” Proc. SPIE 11233, 112330J (2020). [DOI: 10.1117/12.2544893]

[17] I. L. Jernelv, K. Strøm, D. R. Hjelme, A. Aksnes, “Infrared spectroscopy with a fiber- coupled quantum cascade laser for attenuated total reflection measurements towards biomedical applications.,” Sensors, 19, 5130 (2019). [DOI: 10.3390/s19235130]

[18] J. A. Harrington, “Theoretical foundations of infrared fiber optic transmission: hollow- core fibers.,” in Infrared fibers and their applications (SPIE: Washington, 2004), pp. 39–54. [DOI: 10.1117/3.540899.ch3]

[19] M. Miyagi, K. Shojiro, “Design theory of dielectric-coated circular metallic waveg- uides for infrared transmission.,” J. Lightwave Technol., 2, 116–126 (1984). [DOI: 10.1109/JLT.1984.1073590]

[20] Y. Matsuura, S. Kino, T. Katagiri, “Hollow-fiber-based flexible probe for remote mea- surement of infrared attenuated total reflection.,” Appl. Optics, 48, 5396–5400 (2009). [DOI: 10.1364/AO.48.005396]

[21] S. Kino, Y. Tanaka, Y. Matsuura, “Blood glucose measurement by using hollow optical fiber-based attenuated total reflection probe.,” J. Biomed. Eng., 19, 057010 (2014). [DOI: 10.1117/1.JBO.19.5.057010]

[22] S. Kino, S. Omori, T. Katagiri, Y. Matsuura, “Hollow optical-fiber based infrared spectroscopy for measurement of blood glucose level by using multi-reflection prism.,” Biomed. Opt. Express, 7, 701–708 (2016). [DOI: 10.1364/BOE.7.000701]

[23] K. Isensee, N, Kröger-Lui, W. Petrich, “Biomedical applications of mid-infrared quantum cascade lasers-a review.,” Analyst, 143, 5888–5911 (2018). [DOI: 10.1039/c8an01306c]

[24] L. Menzel, A. A. Kosterev,R. F. Curl, F. K. Tittel, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, et al., “Spectroscopic detection of biological NO with a quantum cascade laser.,” Appl. Phys. B: Lasers Opt., 71, 859–863 (2001). [DOI: 10.1007/s003400100562]

[25] R. Lewicki, A. A. Kosterev, Y. A. Bakhirkin, D. M. Thomazy, J. Doty, L. Dong, F. K. Tittel, T. H. Risby, S. Solga, D. Kane, T. Day, “Real time ammonia detection in exhaled human breath with a quantum cascade laser based sensor.,” In Conference on Lasers and Electro-Optics/International Quantum Electronics Conference (Baltimore, MD, USA, 2009), CMS6. [DOI: 10.1364/CLEO.2009.CMS6]

[26] S. Rassel, C. Xu, S. Zhang, D. Ban, “Noninvasive blood glucose detection using a quan- tum cascade laser.,” Aanalyst, 145, 2441–2456 (2020). [DOI: 10.1039/C9AN02354B]

[27] Y. C. Chang, P. Wägli, V. Paeder, A. Homsy, L. Hvozdara, P. Van Der Wal, J. D. Francesco, N. F. De Rooijb, H. P. Herzig, “Cocaine detection by a mid-infrared waveg- uide integrated with a microfluidic chip.,” Lab Chip, 12, 3020–3023 (2012). [DOI: 10.1039/c2lc40601b]

[28] R. Kasahara, S. Kino, S. Soyama, Y. Matsuura, “Noninvasive glucose monitoring using mid-infrared absorption spectroscopy based on a few wavenumbers.,” Biomed. Opt. Express, 9, 289–302 (2018). [DOI: 10.1364/boe.9.000289]

[29] R. Kasahara, S. Kino, S. Soyama, Y. Matsuura, “Unsupervised calibration for noninvasive glucose-monitoring devices using mid-infrared spectroscopy.,” J. Innov. Opt. Heal. Sci., 11, 1850038 (2018). [DOI: 10.1142/S1793545818500384]

[30] M. Grafen, S. Delbeck, H. Busch, H. M. Heise, A. Ostendorf, “Evaluation and bench- marking of an EC-QCL-based mid-infrared spectrometer for monitoring metabolic blood parameters in critical care units.,” Proc. SPIE 10501, 105010A (2018). [DOI: 10.1117/12.2289625]

[31] 秋草直大,古川祐光,梅川豊文,杉山厚志,鈴木仁,枝村忠孝,“生体分析応用と量子カスケードレーザー,” レーザー研究 48, 280–285 (2020).

[32] R. George, J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag-AgI coatings.,” Appl. Optics, 30, 6449–6455 (2005). [DOI: 10.1364/AO.44.006449]

[33] A. Hongo, S. Sato, A. Hattori, K. Iwai, T. Hiroyuki, M. Miyagi, “AgI-coated silver-clad stainless steel hollowwaveguides for infrared lightwave transmission and theirapplica- tions.,” Appl. Optics, 51, 1–7 (2012). [DOI: 10.1364/AO.51.000001]

[34] J. Y. Chen, Q. Zhou, G. Xu, R. T. Wang, E. G. Tai, L. Xie, Q. Zhang, Y. Guan, X. Huang, “Non-invasive blood glucose measurement of 95% certainty by pressure regulated Mid- IR.,” Talanta, 197, 211–217 (2019). [DOI: 10.1016/j.talanta.2019.01.034]

[35] H. M. Heise, R. Marbach, “Human Oral Mucosa Studies with Varying Blood Glucose Concentration by Non-Invasive ATR-FT-IR-Spectroscopy.,” Cell. Mol. Biol., 44, 899– 912 (1998).

[36] K. Kajiwara, T. Uemura, H. Kishikawa, K. Nishida, Y. Hashiguchi, M. Uehara, M. Sakakida, K. Ichinose, M. Shichiri, “Noninvasive measurement of blood glucose con- centrations by analysing fourier transform infra-red absorbance spectra through oral mucosa.,” Med. Biol. Eng. Comput., 31, S17–S22 (1993). [DOI: 10.1007/BF02446645]

[37] A. Basu, S. Dube, M. Slama, I. Errazuriz, J. C. Amezcua, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, Rita Basu, “Time lag of glucose from intravascular to interstitial compartment in humans.,” Diabetes, 62, 4083–4087 (2013). [DOI: 10.2337/db13-1132]

[38] A. Basu, S. Dube, S. Veettil, M. Slama, Y. C. Kudva, T. Peyser, R. E. Carter, C. Cobelli, R. Basu, “Time lag of glucose from intravascular to interstitial compartment in type 1 di- abetes.,” J. Diabetes Sci. Technol., 9, 63–68 (2015). [DOI: 10.1177/1932296814554797]

[39] M. Ibrahim, M. Alaam, H. El-Haes, A. F. Jalbout, A. de Leon, “Analysis of the structure and vibrational spectra of glucose and fructose.,” Eclét. Quím., 3, 15–21 (2006). [DOI: 10.1590/S0100-46702006000300002]

[40] D. Krilov, M. Balarin, M. Kosović, O. Gamulin, J. Brnjas-Kraljević, “FT-IR spectroscopy of lipoproteins – A comparative study.,” Spectrochim. Acta A, 73, 701–706 (2009). [DOI: 10.1016/j.saa.2009.03.015]

[41] K. Fujita, T. Edamura, S. Furuta, M. Yamanishi, “High-performance, homogeneous broad-gain quantum cascade lasers based on dual-upper-state design.,” Appl. Phys. Lett., 96, 241107 (2010). [DOI: 10.1063/1.3455102]

[42] T. Dougakiuchi, K. Fujita, A. Sugiyama, A. Ito, N. Akikusa, T. Edamura, “Broadband tuning of continuous wave quantum cascade lasers in long wavelength (> 10 μm) range.,” Opt. Express, 22, 19930–19935 (2014). [DOI: 10.1364/OE.22.019930]

[43] 浜松ホトニクス,“波長掃引パルス量子カスケードレーザ,” https://www.hamamatsu.com/jp/ja/product/type/L14890-09/index.html(2020 年 8 月 28 日閲覧).

[44] S. Wold, M. Sjöström, L. Eriksson, “PLS-regression: a basic tool of chemometrics.,” Chemometr. Intell. Lab., 58, 109–130 (2001). [DOI: 10.1016/S0169-7439(01)00155-1]

[45] M. Brandstetter, A. Genner, K. Anic, B. Lendl, “Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase.,” Analyst, 135, 3260–3265 (2010). [DOI: 10.1039/c0an00532k]

[46] M. Brandstetter, L. Volgger, A. Genner, C. Jungbauer, B. Lendl, “Direct determination of glucose, lactate and triglycerides in blood serum by a tunable quantum cascade laser-based mid-IR sensor.,” Appl. Phys. B-Lasers O., 110, 233–239 (2013). [DOI: 10.1007/s00340-012-5080-z]

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る