リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「“Mamonoviridae”, a proposed new family of the phylum Nucleocytoviricota」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

“Mamonoviridae”, a proposed new family of the phylum Nucleocytoviricota

Zhang, Ruixuan Takemura, Masaharu Murata, Kazuyoshi Ogata, Hiroyuki 京都大学 DOI:10.1007/s00705-022-05633-1

2023.03

概要

Acanthamoeba castellanii medusavirus J1 is a giant virus that was isolated from a hot spring in Japan in 2019. Recently, a close relative of this virus, named medusavirus stheno T3, was isolated in Japan. Here, we describe their morphological, genomic, and gene content similarities and also propose to create a new family, “Mamonoviridae”, a new genus, “Medusavirus”, and two species, “Medusavirus medusae” and “Medusavirus sthenus”, to classify these two viruses within the phylum Nucleocytoviricota.

この論文で使われている画像

参考文献

165

166

1.

la Scola B, Audic S, Robert C, et al (2003) A Giant Virus in Amoebae. Science (New York,

NY) 299:2033. https://doi.org/10.1126/science.1081867

167

168

169

170

2.

Boyer M, Yutin N, Pagnier I, et al (2009) Giant Marseillevirus highlights the role of

amoebae as a melting pot in emergence of chimeric microorganisms. Proceedings of the

National Academy of Sciences 106:21848–21853.

https://doi.org/10.1073/pnas.0911354106

171

172

173

3.

Philippe N, Legendre M, Doutre G, et al (2013) Pandoraviruses: Amoeba Viruses with

Genomes Up to 2.5 Mb Reaching That of Parasitic Eukaryotes. Science 341:281–286.

https://doi.org/10.1126/science.1239181

174

175

176

4.

Yoshikawa G, Blanc-Mathieu R, Song C, et al (2019) Medusavirus, a Novel Large DNA

Virus Discovered from Hot Spring Water. Journal of Virology 93:e02130-18.

https://doi.org/10.1128/JVI.02130-18

177

178

179

5.

Yoshida K, Zhang R, Garcia KG, et al (2021) Draft Genome Sequence of Medusavirus

Stheno, Isolated from the Tatakai River of Uji, Japan. Microbiol Resour Announc 10:.

https://doi.org/10.1128/MRA.01323-20

180

181

182

183

6.

Rolland C, Andreani J, Sahmi-Bounsiar D, et al (2021) Clandestinovirus: A Giant Virus

With Chromatin Proteins and a Potential to Manipulate the Cell Cycle of Its Host

Vermamoeba vermiformis. Front Microbiol 12:715608.

https://doi.org/10.3389/fmicb.2021.715608

184

185

186

7.

Koonin EV, Dolja VV, Krupovic M, et al (2020) Global Organization and Proposed

Megataxonomy of the Virus World. Microbiol Mol Biol Rev 84:e00061-19.

https://doi.org/10.1128/MMBR.00061-19

187

188

189

8.

Aylward FO, Moniruzzaman M, Ha AD, Koonin EV (2021) A phylogenomic framework

for charting the diversity and evolution of giant viruses. PLOS Biology 19:e3001430.

https://doi.org/10.1371/journal.pbio.3001430

190

191

192

9.

Yutin N, Wolf YI, Raoult D, Koonin EV (2009) Eukaryotic large nucleo-cytoplasmic DNA

viruses: Clusters of orthologous genes and reconstruction of viral genome evolution. Virol J

6:223. https://doi.org/10.1186/1743-422X-6-223

193

194

195

196

10. Walker PJ, Siddell SG, Lefkowitz EJ, et al (2021) Changes to virus taxonomy and to the

International Code of Virus Classification and Nomenclature ratified by the International

Committee on Taxonomy of Viruses (2021). Arch Virol 166:2633–2648.

https://doi.org/10.1007/s00705-021-05156-1

197

198

199

200

11.

201

202

203

12. Watanabe R, Song C, Kayama Y, et al Particle Morphology of Medusavirus Inside and

Outside the Cells Reveals a New Maturation Process of Giant Viruses. Journal of Virology

0:e01853-21. https://doi.org/10.1128/jvi.01853-21

204

205

206

13. Pritchard L, Glover RH, Humphris S, et al (2015) Genomics and taxonomy in diagnostics

for food security: soft-rotting enterobacterial plant pathogens. Anal Methods 8:12–24.

https://doi.org/10.1039/C5AY02550H

207

208

14. Emms DM, Kelly S (2019) OrthoFinder: phylogenetic orthology inference for comparative

genomics. Genome Biology 20:238. https://doi.org/10.1186/s13059-019-1832-y

209

210

211

15. Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T (2009) trimAl: a tool for automated

alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973.

https://doi.org/10.1093/bioinformatics/btp348

212

213

16. Katoh K (2005) MAFFT version 5: improvement in accuracy of multiple sequence

alignment. Nucleic Acids Research 33:511–518. https://doi.org/10.1093/nar/gki198

Aylward FO, Abrahão J, Brussaard C, Fischer MG, Moniruzzaman M, Ogata H, Suttle CA

(2022) Create 3 new families, 3 subfamilies, 13 genera, and 20 new species within the order

Imitervirales (phylum Nucleocytoviricota) and rename two existing species.

https://talk.ictvonline.org/files/proposals/taxonomy_proposals_fungal1/m/fung01/13591

214

215

216

17. Minh BQ, Schmidt HA, Chernomor O, et al (2020) IQ-TREE 2: New Models and Efficient

Methods for Phylogenetic Inference in the Genomic Era. Molecular Biology and Evolution

37:1530–1534. https://doi.org/10.1093/molbev/msaa015

217

218

219

18. Kalyaanamoorthy S, Minh BQ, Wong TKF, et al (2017) ModelFinder: fast model selection

for accurate phylogenetic estimates. Nat Methods 14:587–589.

https://doi.org/10.1038/nmeth.4285

220

221

222

19. Hoang DT, Chernomor O, von Haeseler A, et al (2018) UFBoot2: Improving the Ultrafast

Bootstrap Approximation. Molecular Biology and Evolution 35:518–522.

https://doi.org/10.1093/molbev/msx281

223

224

Figures

225

226

227

Fig. 1 Acanthamoeba castellanii medusavirus J1 (ACMV-J1) replication and its particle feature

228

[12]. (a) ACMV-J1 replication in amoeba cell after infection. (b) A cryo-EM image of ACMV-J1.

229

Scale 200 nm. (c) A 3D reconstruction of ACMV-J1 virion. Scale 50 nm.

230

231

Fig 2 Maximum-likelihood phylogenetic tree of Nucleocytoviricota. The tree was based on a

232

concatenated amino acid sequence alignment of seven marker genes constructed using MAFFT

233

(v.7.471) and trimAl (v.1.4.1) and was built using IQ-TREE 2 (v.2.1.3) [15–17]. The model was

234

LG+F+R8 selected by the built-in Modelfinder of IQ-TREE 2 [18]. The branch supports were

235

computed by 1000 ultrafast bootstrap and SH-aLRT [19]. The tree was visualized by iTOL,

236

the round labels on branches represent high confidence supports with Ultrafast bootstrap ≥

237

95%, SH-aLRT ≥ 80%. Position of proposed family “Mamonoviridae” is reported in red

238

background and marked with stars.

239

240

Fig. 3 Boxplots for (a) tip distance, (b) ANI, (c) TETRA, and (d) normalized OGs sharing level.

241

The horizontal black line represents the value between clandestinovirus and Acanthamoeba

242

castellanii medusavirus J1 (ACMV-J1), a member of proposed species “Medusavirus

243

medusae”.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る