リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Evaluating the Oxidation Rate of Reduced Ferredoxin in Arabidopsis thaliana Independent of Photosynthetic Linear Electron Flow: Plausible Activity of Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Evaluating the Oxidation Rate of Reduced Ferredoxin in Arabidopsis thaliana Independent of Photosynthetic Linear Electron Flow: Plausible Activity of Ferredoxin-Dependent Cyclic Electron Flow around Photosystem I

Ohnishi, Miho Maekawa, Shu Wada, Shinya Ifuku, Kentaro Miyake, Chikahiro 神戸大学

2023.08

概要

The activity of ferredoxin (Fd)-dependent cyclic electron flow (Fd-CEF) around photosystem I (PSI) was determined in intact leaves of Arabidopsis thaliana. The oxidation rate of Fd reduced by PSI (vFd) and photosynthetic linear electron flow activity are simultaneously measured under actinic light illumination. The vFd showed a curved response to the photosynthetic linear electron flow activity. In the lower range of photosynthetic linear flow activity with plastoquinone (PQ) in a highly reduced state, vFd clearly showed a linear relationship with photosynthetic linear electron flow activity. On the other hand, vFd increased sharply when photosynthetic linear electron flow activity became saturated with oxidized PQ as the net CO₂ assimilation rate increased. That is, under higher photosynthesis conditions, we observed excess vFd resulting in electron flow over photosynthetic linear electron flow. The situation in which excess vFd was observed was consistent with the previous Fd-CEF model. Thus, excess vFd could be attributed to the in vivo activity of Fd-CEF. Furthermore, the excess vFd was also observed in NAD(P)H dehydrogenase-deficient mutants localized in the thylakoid membrane. The physiological significance of the excessive vFd was discussed.

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Allen, J.F. Cyclic, pseudocyclic and noncyclic photophosphorylation: New links in the chain. Trend. Plant Sci. 2003, 8, 15–19.

[CrossRef]

Heber, U.; Walker, D. Concerning a dual function of coupled cyclic electron transport in leaves. Plant Physiol. 1992, 100, 1621–1626.

[CrossRef]

Munekage, Y.; Hojo, M.; Meurer, J.; Endo, T.; Tasaka, M.; Shikanai, T. PGR5 is involved in cyclic electron flow around photosystem

I and is essential for photoprotection in Arabidopsis. Cell 2002, 110, 361–371. [CrossRef]

Laisk, A.; Talts, E.; Oja, V.; Eichelmann, H.; Peterson, R.B. Fast cyclic electron transport around photosystem I in leaves under

far-red light: A proton-uncoupled pathway? Photosyn. Res. 2010, 103, 79–95. [CrossRef]

Miyake, C. Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: Molecular

mechanisms and physiological functions. Plant Cell Physiol. 2010, 51, 1951–1963. [CrossRef]

Yamamoto, H.; Takahashi, S.; Badger, M.R.; Shikanai, T. Artificial remodelling of alternative electron flow by flavodiiron proteins

in Arabidopsis. Nat. Plants 2016, 2, 16012. [CrossRef] [PubMed]

Wada, S.; Yamamoto, H.; Suzuki, Y.; Yamori, W.; Shikanai, T.; Makino, A. Flavodiiron protein substitutes for cyclic electron flow

without competing CO2 assimilation in rice. Plant Physiol. 2018, 176, 1509–1518. [CrossRef] [PubMed]

Miyake, C.; Miyata, M.; Shinzaki, Y.; Tomizawa, K. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco

leaves--relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl

fluorescence. Plant Cell Physiol. 2005, 46, 629–637. [CrossRef]

Furutani, R.; Ohnishi, M.; Mori, Y.; Wada, S.; Miyake, C. The difficulty of estimating the electron transport rate at photosystem I.

J. Plant Res. 2022, 135, 565–577. [CrossRef] [PubMed]

Klughammer, C.; Schreiber, U. An improved method, using saturating light pulses, for the determination of photosystem I

quantum yield via P700-absorbance changes at 830 nm. Planta 1994, 192, 261–268. [CrossRef]

Fisher, N.; Kramer, D.M. Non-photochemical reduction of thylakoid photosynthetic redox carriers in vitro: Relevance to cyclic

electron flow around photosystem I? Biochim. Biophys. Acta 2014, 1837, 1944–1954. [CrossRef] [PubMed]

Int. J. Mol. Sci. 2023, 24, 12145

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

11 of 12

Miyake, C.; Schreiber, U.; Asada, K. Ferredoxin-dependent and antimycin A-sensitive reduction of cytochrome b-559 by far-red

light in maize thylakoids; Participation of a menadiol-reducible cytochrome b-559 in cyclic electron flow. Plant Cell Physiol. 1995,

36, 743–748. [CrossRef]

Kadota, K.; Furutani, R.; Makino, A.; Suzuki, Y.; Wada, S.; Miyake, C. Oxidation of P700 induces alternative electron flow in

photosystem I in wheat leaves. Plants 2019, 8, 152. [CrossRef] [PubMed]

Yamori, W.; Shikanai, T. Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis

and plant growth. Ann. Rev. Plant Physiol. 2016, 67, 81–106. [CrossRef]

Hashimoto, M.; Endo, T.; Peltier, G.; Tasaka, M.; Shikanai, T. A nucleus-encoded factor, CRR2, is essential for the expression of

chloroplast ndhB in Arabidopsis. Plant J. 2003, 36, 541–549. [CrossRef]

Furutani, R.; Wada, S.; Ifuku, K.; Maekawa, S.; Miyake, C. Higher reduced state of Fe/S-signals, with the suppressed oxidation of

P700, causes PSI inactivation in Arabidopsis thaliana. Antioxidants 2022, 12, 21. [CrossRef]

Miyake, C. Molecular mechanism of oxidation of P700 and suppression of ROS production in photosystem I in response to

electron-sink limitations in C3 Plants. Antioxidants 2020, 9, 230. [CrossRef] [PubMed]

Furutani, R.; Ifuku, K.; Suzuki, Y.; Noguchi, K.; Shimakawa, G.; Wada, S.; Makino, A.; Sohtome, T.; Miyake, C. P700 Oxidation

Suppresses the Production of Reactive Oxygen Species in Photosystem I; Toru, H., Ed.; Acad Press: Cambridge, MA, USA, 2020; Volume

96, p. 26.

Asada, K.; Kiso, K.; Yoshikawa, K. Univalent reduction of molecular oxygen by spinach chloroplasts on illumination. J. Biochem.

Biol. 1974, 249, 2175–2181.

Kozuleva, M.; Petrova, A.; Milrad, Y.; Semenov, A.; Ivanov, B.; Redding, K.E.; Yacoby, I. Phylloquinone is the principal Mehler

reaction site within photosystem I in high light. Plant Physiol. 2021, 186, 1848–1858. [CrossRef]

Havaux, M.; Davaud, A. Photoinhibition of photosynthesis in chilled potato leaves is not correlated with a loss of Photosystem-II

activity: Preferential inactivation of photosystem I. Photosyn. Res. 1994, 40, 75–92. [CrossRef]

Inoue, K.; Fujie, T.; Yokoyama, E.; Matsuura, K.; Hiyama, T.; Sakurai, H. The photoinhibition sites of photosystem I in isolated

chloroplasts under extremely reducing conditions. Plant Cell Physiol. 1989, 30, 7. [CrossRef]

Satoh, K. Mechanism of photoinactivation in photosynthetic systems. III. The site and mode of photoinactivation in photosystem

I. Plant Cell Physiol. 1970, 11, 187. [CrossRef]

Sonoike, K.; Terashima, I.; Iwaki, M.; Itoh, S. Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by

weak illumination at chilling temperatures. FEBS Lett. 1995, 362, 235–238. [CrossRef] [PubMed]

Terashima, I.; Funayama, S.; Sonoike, K. The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures in

photosystem I, not photosystem II. Planta 1994, 193, 7. [CrossRef]

Foyer, C.; Furbank, R.; Harbinson, J.; Horton, P. The mechanisms contributing to photosynthetic control of electron transport by

carbon assimilation in leaves. Photosyn. Res. 1990, 25, 83–100. [CrossRef]

Tikhonov, A.N. The cytochrome b6 f complex at the crossroad of photosynthetic electron transport pathways. Plant Physiol.

Biochem. PPB 2014, 81, 163–183. [CrossRef]

Furutani, R.; Makino, A.; Suzuki, Y.; Wada, S.; Shimakawa, G.; Miyake, C. Intrinsic fluctuations in transpiration induce

photorespiration to oxidize P700 in photosystem I. Plants 2020, 9, 1761. [CrossRef]

Wada, S.; Suzuki, Y.; Miyake, C. Photorespiration enhances acidification of the thylakoid lumen, reduces the plastoquinone pool,

and contributes to the oxidation of P700 at a lower partial pressure of CO2 in wheat leaves. Plants 2020, 9, 319. [CrossRef]

Hanawa, H.; Ishizaki, K.; Nohira, K.; Takagi, D.; Shimakawa, G.; Sejima, T.; Shaku, K.; Makino, A.; Miyake, C. Land plants drive

photorespiration as higher electron-sink: Comparative study of post-illumination transient O2 -uptake rates from liverworts to

angiosperms through ferns and gymnosperms. Physiol. Plant. 2017, 161, 138–149. [CrossRef]

Sejima, T.; Hanawa, H.; Shimakawa, G.; Takagi, D.; Suzuki, Y.; Fukayama, H.; Makino, A.; Miyake, C. Post-illumination transient

O2 -uptake is driven by photorespiration in tobacco leaves. Physiol. Plant. 2016, 156, 227–238. [CrossRef]

Miyake, C.; Suzuki, Y.; Yamamoto, H.; Amako, K.; Makino, A. O2 -enhanced induction of photosynthesis in rice leaves: The

Mehler-ascorbate peroxidase (MAP) pathway drives cyclic electron flow within PSII and cyclic electron flow around PSI. Soil Sci.

Plant Nutri. 2012, 58, 718–727. [CrossRef]

Yamamoto, H.; Shikanai, T. PGR5-dependent cyclic electron flow protects photosystem I under fluctuating light at donor and

acceptor sides. Plant Physiol. 2019, 179, 588–600. [CrossRef] [PubMed]

Yamamoto, H.; Shikanai, T. Does the Arabidopsis proton gradient regulation 5 mutant leak protons from the thylakoid membrane?

Plant Physiol. 2020, 184, 421–427. [CrossRef]

Suganami, M.; Konno, S.; Maruhashi, R.; Takagi, D.; Tazoe, Y.; Wada, S.; Yamamoto, H.; Shikanai, T.; Ishida, H.; Suzuki, Y.; et al.

Expression of flavodiiron protein rescues defects in electron transport around PSI resulting from overproduction of Rubisco

activase in rice. J. Exp. Bot. 2022, 73, 2589–2600. [CrossRef]

Rantala, S.; Lempiäinen, T.; Gerotto, C.; Tiwari, A.; Aro, E.M.; Tikkanen, M. PGR5 and NDH-1 systems do not function as

protective electron acceptors but mitigate the consequences of PSI inhibition. Biochim. Biophys. Acta Bioenerg. 2020, 1861, 148154.

[CrossRef] [PubMed]

Wada, S.; Amako, K.; Miyake, C. Identification of a novel mutation exacerbated the PSI photoinhibition in pgr5/pgrl1 mutants;

Caution for overestimation of the phenotypes in Arabidopsis pgr5-1 Mutant. Cells 2021, 10, 2884. [CrossRef]

Int. J. Mol. Sci. 2023, 24, 12145

38.

39.

40.

41.

42.

43.

44.

45.

12 of 12

Ohnishi, M.; Furutani, R.; Sohtome, T.; Suzuki, T.; Wada, S.; Tanaka, S.; Ifuku, K.; Ueno, D.; Miyake, C. Photosynthetic parameters

show specific responses to essential mineral deficiencies. Antioxidants 2021, 10, 996. [CrossRef]

Porra, R.J.; Scheer, H. Towards a more accurate future for chlorophyll a and b determinations: The inaccuracies of Daniel Arnon’s

assay. Photosyn. Res. 2019, 140, 215–219. [CrossRef]

Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [CrossRef]

Genty, B.; Harbinson, J.; Briantais, J.M.; Baker, N.R. The relationship between non-photochemical quenching of chlorophyll

fluorescence and the rate of photosystem 2 photochemistry in leaves. Photosyn. Res. 1990, 25, 249–257. [CrossRef]

Bilger, W.; Björkman, O. Relationships among violaxanthin deepoxidation, thylakoid membrane conformation, and nonphotochemical chlorophyll fluorescence quenching in leaves of cotton (Gossypium hirsutum L.). Planta 1994, 193, 238–246. [CrossRef]

Oxborough, K.; Baker, N.R. An evaluation of the potential triggers of photoinactivation of photosystem II in the context of a

Stern-Volmer model for downregulation and the reversible radical pair equilibrium model. Phil. Trans. R. Soc. Lond. B Biol. Sci.

2000, 355, 1489–1498. [CrossRef] [PubMed]

Klughammer, C.; Schreiber, U. Deconvolution of ferredoxin, plastocyanin, and P700 transmittance changes in intact leaves with a

new type of kinetic LED array spectrophotometer. Photosyn. Res. 2016, 128, 195–214. [CrossRef]

Sacksteder, C.A.; Kramer, D.M. Dark-interval relaxation kinetics (DIRK) of absorbance changes as a quantitative probe of

steady-state electron transfer. Photosyn. Res. 2000, 66, 145–158. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る