リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High‐Resolution 3‐D Imaging of Daytime Sporadic‐E Over Japan by Using GNSS TEC and Ionosondes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High‐Resolution 3‐D Imaging of Daytime Sporadic‐E Over Japan by Using GNSS TEC and Ionosondes

Fu, Weizheng Ssessanga, Nicholas Yokoyama, Tatsuhiro Yamamoto, Mamoru 京都大学 DOI:10.1029/2021SW002878

2021.12

概要

A novel two-step three-dimensional (3-D) computerized ionospheric tomography (CIT) technique has been developed to image the structure of daytime midlatitude sporadic-E (Es). The CIT relies on total electron content (TEC) from a dense ground-based Global Navigation Satellite System (GNSS) receiver network over the Japan area. First, on a coarse grid, the TEC data and a multiplicative algebraic reconstruction technique (MART) are used to reconstruct the F region from a smooth background. Then, on a fine grid and using singular value decomposition (SVD), the residues after deducting the F region contribution to TEC are utilized in reconstructing the E region, extending 80–180 km in altitude. To vertically constrain the E region solution, we introduced a family of subsets of time-dependent empirical orthogonal functions (EOFs) from a Chapman model function tuned to manually scaled ionosonde observations. We analyzed three event days to validate the results. East-West (E-W) aligned frontal structures, spanning several hundred kilometers, migrating northward in the morning and southward in the afternoon, were observed. The new technique effectively tracks the Es-height variation over time, which had proved difficult to reproduce in earlier tempts at 3-D Es reconstructions.

この論文で使われている画像

参考文献

Aarons, J., & Whitney, H. E. (1968). Ionospheric scintillations at 136 MHz from a synchronous satellite. Planetary and Space Science, 16(1),

21–28. https://doi.org/10.1016/0032-0633(68)90042-1

Andoh, S., Saito, A., & Shinagawa, H. (2021). Temporal evolution of three-dimensional structures of metal ion layer around Japan simulated by a

midlatitude ionospheric model. Journal of Geophysical Research: Space Physics, 126(6). https://doi.org/10.1029/2021JA029267

Andoh, S., Saito, A., Shinagawa, H., & Ejiri, M. K. (2020). First simulations of day-to-day variability of mid-latitude sporadic E layer structures.

Earth, Planets and Space, 72(1), 1–9. https://doi.org/10.1186/s40623-020-01299-8

Austen, J. R., Franke, S. J., & Liu, C. (1988). Ionospheric imaging using computerized tomography. Radio Science, 23(3), 299–307. https://doi.

org/10.1029/RS023i003p00299

Belehaki, A., Jakowski, N., & Reinisch, B. (2004). Plasmaspheric electron content derived from GPS TEC and digisonde ionograms. Advances

in Space Research, 33(6), 833–837. https://doi.org/10.1016/j.asr.2003.07.008

Bilitza, D., Altadill, D., Reinisch, B., Galkin, I., Shubin, V., & Truhlik, V. (2016). The international reference ionosphere: Model update 2016. In

EGU general assembly conference abstracts (pp. EPSC2016–9671).

Bilitza, D., Altadill, D., Truhlik, V., Shubin, V., Galkin, I., Reinisch, B., & Huang, X. (2017). International Reference Ionosphere 2016: From

ionospheric climate to real-time weather predictions. Space Weather, 15(2), 418–429. https://doi.org/10.1002/2016SW001593

Das, S. K., & Shukla, A. K. (2011). Two-dimensional ionospheric tomography over the low-latitude Indian region: An intercomparison of ART

and MART algorithms. Radio Science, 46(2). https://doi.org/10.1029/2010RS004350

Fan, J., & Ma, G. (2014). Characteristics of GPS positioning error with non-uniform pseudorange error. GPS Solutions, 18(4), 615–623. https://

doi.org/10.1007/s10291-013-0359-z

Gołub, G. H., & Van Loan, C. (1989). Matrix computations. Johns Hopkins University Press.

Haldoupis, C. (2011). A tutorial review on sporadic E layers. Aeronomy of the Earth’s Atmosphere and Ionosphere, 2, 381–394. https://doi.

org/10.1007/978-94-007-0326-1_29

Haldoupis, C. (2019). An improved ionosonde-based parameter to assess sporadic E layer intensities: A simple idea and an algorithm. Journal of

Geophysical Research: Space Physics, 124(3), 2127–2134. https://doi.org/10.1029/2018JA026441

Haldoupis, C., Meek, C., Christakis, N., Pancheva, D., & Bourdillon, A. (2006). Ionogram height–time–intensity observations of descending sporadic E layers at mid-latitude. Journal of Atmospheric and Solar-Terrestrial Physics, 68(3–5), 539–557. https://doi.org/10.1016/j.

jastp.2005.03.020

Hsu, C.-T., Matsuo, T., Yue, X., Fang, T.-W., Fuller-Rowell, T., Ide, K., & Liu, J.-Y. (2018). Assessment of the impact of FORMOSAT-7/COSMIC-2 GNSS RO observations on midlatitude and low-latitude ionosphere specification: Observing system simulation experiments using

Ensemble Square Root Filter. Journal of Geophysical Research: Space Physics, 123(3), 2296–2314. https://doi.org/10.1002/2017JA025109

Kelley, M. C. (2009). The Earth’s ionosphere: Plasma physics and electrodynamics. Academic Press.

Kunitsyn, V. E., & Tereshchenko, E. D. (2003). Ionospheric tomography. Springer Science & Business Media. https://doi.

org/10.1007/978-3-662-05221-1

Lu, W., Ma, G., & Wan, Q. (2021). A review of voxel-based computerized ionospheric tomography with GNSS ground receivers. Remote Sensing,

13(17), 3432. https://doi.org/10.3390/rs13173432

Ma, G., Gao, W., Li, J., Chen, Y., & Shen, H. (2014). Estimation of GPS instrumental biases from small scale network. Advances in Space Research, 54(5), 871–882. https://doi.org/10.1016/j.asr.2013.01.008

Ma, G., & Maruyama, T. (2003). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. In Annales geophysicae (Vol.

21, pp. 2083–2093). https://doi.org/10.5194/angeo-21-2083-2003

Maeda, J., & Heki, K. (2014). Two-dimensional observations of midlatitude sporadic E irregularities with a dense GPS array in Japan. Radio

Science, 49(1), 28–35. https://doi.org/10.1002/2013rs005295

Maeda, J., & Heki, K. (2015). Morphology and dynamics of daytime mid-latitude sporadic-E patches revealed by GPS total electron content

observations in Japan. Earth, Planets and Space, 67(1), 1–9. https://doi.org/10.1186/s40623-015-0257-4

Maeda, J., Suzuki, T., Furuya, M., & Heki, K. (2016). Imaging the midlatitude sporadic E plasma patches with a coordinated observation of

spaceborne InSAR and GPS total electron content. Geophysical Research Letters, 43(4), 1419–1425. https://doi.org/10.1002/2015GL067585

Mao, T., Wang, J., Yang, G., Yu, T., Ping, J., & Suo, Y. (2010). Effects of typhoon Matsa on ionospheric TEC. Chinese Science Bulletin, 55(8),

712–717. https://doi.org/10.1007/s11434-009-0472-0

Mathews, J. (1998). Sporadic E: Current views and recent progress. Journal of Atmospheric and Solar-Terrestrial Physics, 60(4), 413–435.

https://doi.org/10.1016/s1364-6826(97)00043-6

Miller, K., & Smith, L. (1975). Horizontal structure of midlatitude sporadic-E layers observed by incoherent scatter radar. Radio Science, 10(3),

271–276. https://doi.org/10.1029/RS010i003p00271

Muafiry, I. N., Heki, K., & Maeda, J. (2018). 3D tomography of midlatitude sporadic-E in Japan from GNSS-TEC data. Earth, Planets and Space,

70(1), 1–12. https://doi.org/10.1186/s40623-018-0815-7

Mungufeni, P., Kim, Y. H., & Ssessenga, N. (2021). Observations of ionospheric irregularities and its correspondence with sporadic E occurrence

over South Korea and Japan. Advances in Space Research, 67(7), 2207–2218. https://doi.org/10.1016/j.asr.2021.01.013

Pi, X., Mannucci, A., Lindqwister, U., & Ho, C. (1997). Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophysical Research Letters, 24(18), 2283–2286. https://doi.org/10.1029/97gl02273

Raymund, T. D., Austen, J. R., Franke, S., Liu, C., Klobuchar, J., & Stalker, J. (1990). Application of computerized tomography to the investigation of ionospheric structures. Radio Science, 25(5), 771–789. https://doi.org/10.1029/RS025i005p00771

15 of 16

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Space Weather

10.1029/2021SW002878

Razin, M. R. G., & Voosoghi, B. (2016). Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography. Advances

in Space Research, 58(3), 339–348. https://doi.org/10.1016/j.asr.2016.04.029

Saito, A., Fukao, S., & Miyazaki, S. (1998). High resolution mapping of TEC perturbations with the GSI GPS network over Japan. Geophysical

Research Letters, 25(16), 3079–3082. https://doi.org/10.1029/98GL52361

Saito, S., Suzuki, S., Yamamoto, M., Chen, C.-H., & Saito, A. (2017). Real-time ionosphere monitoring by three-dimensional tomography over

Japan. NAVIGATION, Journal of the Institute of Navigation, 64(4), 495–504. https://doi.org/10.1002/navi.213

Saito, S., Yamamoto, M., Hashiguchi, H., & Maegawa, A. (2006). Observation of three-dimensional structures of quasi-periodic echoes associated with mid-latitude sporadic-E layers by MU radar ultra-multi-channel system. Geophysical Research Letters, 33(14). https://doi.

org/10.1029/2005GL025526

Šauli, P., & Bourdillon, A. (2008). Height and critical frequency variations of the sporadic-E layer at midlatitudes. Journal of Atmospheric and

Solar-Terrestrial Physics, 70(15), 1904–1910. https://doi.org/10.1016/j.jastp.2008.03.016

Shinagawa, H., Miyoshi, Y., Jin, H., & Fujiwara, H. (2017). Global distribution of neutral wind shear associated with sporadic E layers derived

from GAIA. Journal of Geophysical Research: Space Physics, 122(4), 4450–4465. https://doi.org/10.1002/2016ja023778

Shubin, V. (2015). Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations. Advances in Space Research, 56(5), 916–928. https://doi.org/10.1016/j.asr.2015.05.029

Shubin, V., Karpachev, A., & Tsybulya, K. (2013). Global model of the F2 layer peak height for low solar activity based on GPS radio-occultation

data. Journal of Atmospheric and Solar-Terrestrial Physics, 104, 106–115. https://doi.org/10.1016/j.jastp.2013.08.024

Ssessanga, N. (2018). A tomographic Investigation of mid-latitude nighttime ionospheric E-F coupling. In 42nd COSPAR scientific assembly

(Vol. 42, p. C1.5-7-18).

Ssessanga, N., Kim, Y. H., & Jeong, S.-H. (2017). A statistical study on the F2 layer vertical variation during nighttime medium-scale traveling

ionospheric disturbances. Journal of Geophysical Research: Space Physics, 122(3), 3586–3601. https://doi.org/10.1002/2016JA023463

Ssessanga, N., Yamamoto, M., Saito, S., Saito, A., & Nishioka, M. (2021). Complementing regional ground GNSS-STEC computerized ionospheric tomography (CIT) with ionosonde data assimilation. GPS Solutions, 25(3), 1–15. https://doi.org/10.1007/s10291-021-01133-y

Sun, W., Ning, B., Hu, L., Yue, X., Zhao, X., Lan, J., et al. (2020). The evolution of complex Es observed by multi instruments over low-latitude

China. Journal of Geophysical Research: Space Physics, 125(8), e2019JA027656. https://doi.org/10.1029/2019JA027656

Sun, W., Zhao, X., Hu, L., Yang, S., Xie, H., Chang, S., et al. (2021). Morphological characteristics of thousand-kilometer-scale Es structures over

China. Journal of Geophysical Research: Space Physics, 126(2), e2020JA028712. https://doi.org/10.1029/2020JA028712

Sutton, E., & Na, H. (1995). Comparison of geometries for ionospheric tomography. Radio Science, 30(1), 115–125. https://doi.

org/10.1029/94RS02314

Tsunoda, R. T., Cosgrove, R. B., & Ogawa, T. (2004). Azimuth-dependent Es layer instability: A missing link found. Journal of Geophysical

Research: Space Physics, 109(A12). https://doi.org/10.1029/2004JA010597

Whitehead, J. (1972). The structure of sporadic E from a radio experiment. Radio Science, 7(3), 355–358. https://doi.org/10.1029/RS007i003p00355

Whitehead, J. (1989). Recent work on mid-latitude and equatorial sporadic-E. Journal of Atmospheric and Terrestrial Physics, 51(5), 401–424.

https://doi.org/10.1016/0021-9169(89)90122-0

Wu, D. L., Ao, C. O., Hajj, G. A., de La Torre Juarez, M., & Mannucci, A. J. (2005). Sporadic E morphology from GPS-CHAMP radio occultation. Journal of Geophysical Research: Space Physics, 110(A1). https://doi.org/10.1029/2004JA010701

Xiong, P., Zhai, D., Long, C., Zhou, H., Zhang, X., & Shen, X. (2021). Long short-term memory neural network for ionospheric total electron

content forecasting over China. Space Weather, 19(4), e2020SW002706. https://doi.org/10.1029/2020SW002706

Yamamoto, M., Itsuki, T., Kishimoto, T., Tsunoda, R. T., Pfaff, R. F., & Fukao, S. (1998). Comparison of E-region electric fields observed

with a sounding rocket and a Doppler radar in the SEEK campaign. Geophysical Research Letters, 25(11), 1773–1776. https://doi.

org/10.1029/98gl01055

Yao, Y., Tang, J., Chen, P., Zhang, S., & Chen, J. (2013). An improved iterative algorithm for 3-D ionospheric tomography reconstruction. IEEE

Transactions on Geoscience and Remote Sensing, 52(8), 4696–4706. https://doi.org/10.1109/TGRS.2013.2283736

Yizengaw, E., Moldwin, M., Galvan, D., Iijima, B., Komjathy, A., & Mannucci, A. (2008). Global plasmaspheric TEC and its relative contribution to GPS TEC. Journal of Atmospheric and Solar-Terrestrial Physics, 70(11–12), 1541–1548. https://doi.org/10.1016/j.jastp.2008.04.022

Yokoyama, T., Hysell, D. L., Otsuka, Y., & Yamamoto, M. (2009). Three-dimensional simulation of the coupled Perkins and Es-layer instabilities

in the nighttime midlatitude ionosphere. Journal of Geophysical Research: Space Physics, 114(A3). https://doi.org/10.1029/2008JA013789

Yokoyama, T., Yamamoto, M., Fukao, S., Takahashi, T., & Tanaka, M. (2005). Numerical simulation of mid-latitude ionospheric E-region based

on SEEK and SEEK-2 observations. In Annales geophysicae (Vol. 23, pp. 2377–2384). https://doi.org/10.5194/angeo-23-2377-2005

Zeng, Z., & Sokolovskiy, S. (2010). Effect of sporadic E clouds on GPS radio occultation signals. Geophysical Research Letters, 37(18). https://

doi.org/10.1029/2010GL044561

FU ET AL.

16 of 16

...

参考文献をもっと見る