リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Japan and the UK: Emission predictions of electric and hydrogen trains to 2050」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Japan and the UK: Emission predictions of electric and hydrogen trains to 2050

Logan, Kathryn G. Nelson, John D. McLellan, Benjamin C. Hastings, Astley 京都大学 DOI:10.1016/j.trip.2021.100344

2021.06

概要

Electric trains (ETs) and hydrogen trains (HTs) offer an opportunity for both Japan and the UK to meet their national targets as part of the Paris Agreement. Although ETs and HTs are considered zero emission at the point of use, their true environmental impact is dependent upon non-tailpipe emissions from fuel/energy production and vehicle manufacture, maintenance and disposal. To assess and compare the carbon dioxide emissions produced from ETs and HTs in Japan and the UK from 2020 and 2050, the operating emissions of these trains were projected. Results compared ET and HT emissions with diesel fuelled trains (DFTs) to better assess which fuel type was the most environmentally friendly. Emissions per train, cumulative emissions and total energy required for ETs and HTs were compared. Results indicated that even with technological improvements, DD DFTs produced the highest level of emissions in both countries, followed by HTs. Although ETs produced the lowest level of emissions, it is likely that a mix of both ETs and HTs will be required to meet passenger demand and for travel within rural areas. As Japan has already transitioned towards ETs, future policy focus should be placed on decarbonisation of their energy sector and a shift away from fossil fuels in favour of renewable energy, otherwise environmental benefits of ETs will be diminished. As the UK is decarbonising its electricity network, focus needs to be placed on electrifying the majority of the rail network and running the rest on hydrogen to decarbonise rail transport.

この論文で使われている画像

参考文献

Abe, R., Kato, H., 2017. What led to the establishment of a rail-oriented city?

Determinants of urban rail supply in Tokyo, Japan, 1950–2010. Transp. Policy 58,

72–79. https://doi.org/10.1016/j.tranpol.2017.05.004.

Akimoto, K., Takagi, M., Tomoda, T., 2007. Economic evaluation of the geological

storage of CO2 considering the scale of economy. Int. J. Greenh. Gas Control 1,

271–279. https://doi.org/10.1016/S1750-5836(06)00003-X.

Alcalde, J., Heinemann, N., Mabon, L., Worden, R.H., de Coninck, H., Robertson, H.,

Maver, M., Ghanbari, S., Swennenhuis, F., Mann, I., Walker, T., Gomersal, S., Bond,

C.E., Allen, M.J., Haszeldine, R.S., James, A., Mackay, E.J., Brownsort, P.A.,

Faulkner, D.R., Murphy, S., 2019. Acorn: Developing full-chain industrial carbon

capture and storage in a resource- and infrastructure-rich hydrocarbon province. J.

Clean. Prod. 233, 963–971. https://doi.org/10.1016/J.JCLEPRO.2019.06.087.

Conclusions

Results from this study indicate that ETs produced lower levels of

operating emissions than both HTs and DFTs in both countries. However, both countries will need to take a different approach if they are

13

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

K.G. Logan et al.

Transportation Research Interdisciplinary Perspectives 10 (2021) 100344

attachment_data/file/927876/rail-delays-and-compensation-report-2020.pdf

(accessed 10.25.20).

DfT, 2019. Energy and environment: data tables (ENV) [WWW Document]. ENV0201

Greenh. gas Emiss. by Transp. mode United Kingdom. URL https://www.gov.

uk/government/statistical-data-sets/energy-and-environment-data-tables-env

(accessed 5.19.20).

EDMC, 2017. Handbook of Japan’s & World Energy & Economic Statistics. The Energy

Conservation Center, Japan.

ERIA, 2019. Demand and Supply Potential of Hydrogen Energy in East Asia [WWW

Document]. URL https://www.g20karuizawa.go.jp/assets/pdf/Demand and Supply

Potential of Hydrogen Energy in East Asia.pdf (accessed 5.19.20).

Fan, A., Huang, L., Lin, S., Chen, N., Zhu, L., Wang, X., 2018. Performance Comparison

Between Renewable Obligation and Feed-in Tariff with Contract for Difference in

UK. In: in: 2018 China International Conference on Electricity Distribution (CICED),

pp. 2761–2765. https://doi.org/10.1109/CICED.2018.8592322.

Fernández-Dacosta, C., Shen, L., Schakel, W., Ramirez, A., Kramer, G.J., 2019. Potential

and challenges of low-carbon energy options: Comparative assessment of alternative

fuels for the transport sector. Appl. Energy 236, 590–606. https://doi.org/10.1016/

j.apenergy.2018.11.055.

Fu, P., Pudjianto, D., Zhang, X., Strbac, G., 2019. Evaluating Strategies for Decarbonising

the Transport Sector in Great Britain. 2019 IEEE Milan PowerTech., 1–6. https://

doi.org/10.1109/PTC.2019.8810865.

Gallardo, F.I., Monforti Ferrario, A., Lamagna, M., Bocci, E., Astiaso Garcia, D., BaezaJeria, T.E., 2020. A Techno-Economic Analysis of solar hydrogen production by

electrolysis in the north of Chile and the case of exportation from Atacama Desert to

Japan. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2020.07.050

Gattusoa, D., Restuccia, A., 2014. A tool for railway transport cost evaluation. Procedia Soc. Behav. Sci. 111, 549–558. https://doi.org/10.1016/j.sbspro.2014.01.088.

Ghaviha, N., Campillo, J., Bohlin, M., Dahlquist, E., 2017. Review of Application of

Energy Storage Devices in Railway Transportation. Energy Procedia 105,

4561–4568. https://doi.org/10.1016/j.egypro.2017.03.980.

Global Railway Review, 2018. Britain’s railway will see 7,000 new carriages by 2021

[WWW Document] accessed 10.28.20 https://www.globalrailwayreview.com/

news/65864/britains-railway-7000-carriages-2021/, .

González-Gil, A., Palacin, R., Batty, P., 2015. Optimal energy management of urban rail

systems: Key performance indicators. Energy Convers. Manag. 90, 282–291.

https://doi.org/10.1016/j.enconman.2014.11.035.

González-Gil, A., Palacin, R., Batty, P., Powell, J.P., 2014. A systems approach to reduce

urban rail energy consumption. Energy Convers. Manag. 80, 509–524. https://doi.

org/10.1016/J.ENCONMAN.2014.01.060.

González, R., Hosoda, E.B., 2016. Environmental impact of aircraft emissions and

aviation fuel tax in Japan. J. Air Transp. Manag. 57, 234–240. https://doi.org/

10.1016/j.jairtraman.2016.08.006.

Hart, D., Howes, J., Madden, B., Boyd, E., 2016. Hydrogen and Fuel Cells: Opportunities

for Growth [WWW Document]. E4Tech Elem. Energy. URL https://www.

e4tech.com/uploads/files/UKHFC-Roadmap-Final-Main-Report-171116_1_.pdf

(accessed 5.19.20).

Haseli, Y., Naterer, G.F., Dincer, I., 2008. Comparative assessment of greenhouse gas

mitigation of hydrogen passenger trains. Int. J. Hydrogen Energy 33, 1788–1796.

https://doi.org/10.1016/J.IJHYDENE.2008.02.005.

Hayashi, M., Hughes, L., 2013. The policy responses to the Fukushima nuclear accident

and their effect on Japanese energy security. Energy Policy 59, 86–101. https://doi.

org/10.1016/J.ENPOL.2012.08.059.

Hayashiya, H., 2017. Recent Trend of Regenerative Energy Utilization in Traction Power

Supply System in Japan. Urban Rail Transit 3, 183–191. https://doi.org/10.1007/

s40864-017-0070-4.

Hensher, D.A., 2007. Sustainable public transport systems: Moving towards a value for

money and network-based approach and away from blind commitment. Transp.

Policy. https://doi.org/10.1016/j.tranpol.2006.10.004

Hood, C.P., 2006. Shinkansen: From Bullet Train to Symbol of Modern Japan. Social

Science Japan Journal. https://doi.org/10.1093/ssjj/jyl020.

IEA, 2017. Railway Handbook 2017: Energy Consumption and CO2 Emissions [WWW

Document] accessed 5.19.20 https://uic.org/IMG/pdf/handbook_iea-uic_2017_

web3.pdf, .

IEA, 2016. Energy Policies of an IEA Country: Japan 2016 Review [WWW Document]

accessed 5.19.20 https://webstore.iea.org/energy-policies-of-iea-countries-japan2016-review-japanese, .

IEEJ, 2018. IEEJ Outlook 2018 - Prospects and Challanges until 2050 [WWW

Document] accessed 5.19.20 https://eneken.ieej.or.jp/data/7748.pdf, .

IGES, 2010. Japan 2050 Low Carbon Navigator: A User’s Guide [WWW Document]

accessed

5.19.20

http://www.2050-low-carbon-navi.jp/web/files/PDF/

usersGuide_e.pdf, .

Ito, K., Morita, Y., Yanagisawa, A., Suehiro, S., Komiyama, R., Shen, Z., 2006. Japan

Long-Term Energy Outlook A Projection up to 2030 under Environmental

Constraints and Changing Energy Markets [WWW Document]. URL http://

eneken.ieej.or.jp/data/en/data/pdf/342.pdf (accessed 5.19.20).

Iyer, G., Hultman, N., Eom, J., McJeon, H., Patel, P., Clarke, L., 2015. Diffusion of lowcarbon technologies and the feasibility of long-term climate targets. Technol.

Forecast.

Soc.

Change

90,

103–118.

https://doi.org/10.1016/j.

techfore.2013.08.025.

Jensterle, M., Narita, J., Piria, R., Samadi, S., Prantner, M., Crone, K., Siegemund, S.,

Kan, S., Matsumoto, T., Shibata, Y., 2019. The role of clean hydrogen in the future

energy systems of Japan and Germany. Berlin adelphi. Last accessed 6, 2019.

Jong, J.C., Chang, E., 2005. Models for Estimating Energy Consumption of Electric

Trains. J. East. Asia Soc. Transp. Stud. 6, 278–291. https://doi.org/10.11175/

easts.6.278.

Aruga, K., 2020. Analyzing the condition of Japanese electricity cost linkages by fossil

fuel sources after the Fukushima disaster. Energy Transitions 4, 91–100. https://doi.

org/10.1007/s41825-020-00025-y.

Ashina, S., Fujino, J., Masui, T., Ehara, T., Hibino, G., 2012. A roadmap towards a lowcarbon society in Japan using backcasting methodology: Feasible pathways for

achieving an 80% reduction in CO2 emissions by 2050. Energy Policy 41, 584–598.

https://doi.org/10.1016/J.ENPOL.2011.11.020.

BEIS, 2020. £90 million UK drive to reduce carbon emissions [WWW Document]

accessed 5.19.20 https://www.gov.uk/government/news/90-million-uk-drive-toreduce-carbon-emissions, .

BEIS, 2019a. Digest of UK Energy Statistics (DUKES) 2018 Chapter 5: Electricity [WWW

Document] accessed 5.19.20 https://assets.publishing.service.gov.uk/government/

uploads/system/uploads/attachment_data/file/736148/DUKES_2018.pdf, .

BEIS, 2019b. Re-use of oil and gas assets for carbon capture usage and storage projects

[WWW Document] accessed 5.19.20 https://assets.publishing.service.gov.

uk/government/uploads/system/uploads/attachment_data/file/819901/reuse-oilgas-assets-ccus-projects.pdf, .

BEIS, 2018a. Implementing the End of Unabated Coal by 2025 [WWW Document]

accessed 5.19.20 https://assets.publishing.service.gov.uk/government/uploads/

system/uploads/attachment_data/file/672137/Government_Response_to_

unabated_coal_consultation_and_statement_of_policy.pdf, .

BEIS, 2018b. The Clean Growth Strategy [WWW Document]. URL https://assets.

publishing.service.gov.uk/government/uploads/system/uploads/

attachment_data/file/700496/clean-growth-strategy-correction-april-2018.pdf

(accessed 5.19.20).

BEIS, 2017. The Clean Growth Strategy: Leading the way to a low carbon future [WWW

Document]. URL https://assets.publishing.service.gov.uk/government/uploads/

system/uploads/attachment_data/file/700496/clean-growth-strategy-correctionapril-2018.pdf.

Bowman, A., 2015. An illusion of success: The consequences of British rail privatisation.

Account. Forum 39, 51–63. https://doi.org/10.1016/J.ACCFOR.2014.10.001.

Bracaglia, V., D’Alfonso, T., Nastasi, A., Sheng, D., Wan, Y., Zhang, A., 2020. High-speed

rail networks, capacity investments and social welfare. Transp. Res. Part A Policy

Pract. 132, 308–323. https://doi.org/10.1016/j.tra.2019.11.011.

Brand, C., Anable, J., 2019. ‘Disruption’ and ‘continuity’ in transport energy systems :

the case of the ban on new conventional fossil fuel vehicles, in: Eceee 2019 Summer

Study. Giens, near Hyeres, France, pp. 1–12.

Brand, C., Anable, J., Philips, I., Morton, C., 2019. Transport Energy Air pollution Model

(TEAM). Methodology Guide (No, UKERC/DM/2019/WP/01).

Brand, C, Anable, J, Ketsopoulou, I, Watson, J, 2020. Road to zero or road to nowhere?

Disrupting transport and energy in a zero carbon world. Energy Policy. https://doi.

org/10.1016/j.enpol.2020.111334.

Brand, C., Tran, M., Anable, J., 2012. The UK transport carbon model: An integrated life

cycle approach to explore low carbon futures. Energy Policy 41, 107–124. https://

doi.org/10.1016/J.ENPOL.2010.08.019.

Bugalia, N., Maemura, Y., Ozawa, K., 2019. Demand risk management of private HighSpeed Rail operators: A review of experiences in Japan and Taiwan. Transp. Policy.

https://doi.org/10.1016/j.tranpol.2019.12.004

Byers, E.A., Hall, J.W., Amezaga, J.M., 2014. Electricity generation and cooling water

use: UK pathways to 2050. Glob. Environ. Chang. 25, 16–30. https://doi.org/

10.1016/j.gloenvcha.2014.01.005.

CCC, 2018. Reducing UK emissions 2018 Progress Report to Parliament [WWW

Document]. https://www.theccc.org.uk/publication/reducing-uk-emissions-2018progress-report-to-parliament/ (Accessed 19/12/20).

Chan, S., Miranda-Moreno, L., Patterson, Z., 2013. Analysis of GHG Emissions for City

Passenger Trains: Is Electricity an Obvious Option for Montreal Commuter Trains? J.

Transp. Technol. 03, 17–29. https://doi.org/10.4236/jtts.2013.32a003.

Chanchetti, L.F., Leiva, D.R., Lopes de Faria, L.I., Ishikawa, T.T., 2020. A scientometric

review of research in hydrogen storage materials. Int. J. Hydrogen Energy 45,

5356–5366. https://doi.org/10.1016/j.ijhydene.2019.06.093.

Chang, Y., Lei, S., Teng, J., Zhang, J., Zhang, L., Xu, X., 2019. The energy use and

environmental emissions of high-speed rail transportation in China: A bottom-up

modeling. Energy 182, 1193–1201. https://doi.org/10.1016/j.energy.2019.06.120.

Chaturvedi, V., Kim, S.H., 2015. Long term energy and emission implications of a global

shift to electricity-based public rail transportation system. Energy Policy 81,

176–185. https://doi.org/10.1016/J.ENPOL.2014.11.013.

Chehade, Z., Mansilla, C., Lucchese, P., Hilliard, S., Proost, J., 2019. Review and analysis

of demonstration projects on power-to-X pathways in the world. Int. J. Hydrogen

Energy 44, 27637–27655. https://doi.org/10.1016/j.ijhydene.2019.08.260.

Chester, M.V., Horvath, A, 2009. Environmental assessment of passenger transportation

should include infrastructure and supply chains. Environmental Research Letters.

https://doi.org/10.1088/1748-9326/4/2/024008.

Chiaramonti, D., Maniatis, K., 2020. Security of supply, strategic storage and Covid19:

Which lessons learnt for renewable and recycled carbon fuels, and their future role

in decarbonizing transport?. Appl. Energy 271,. https://doi.org/10.1016/j.

apenergy.2020.115216 115216.

Cooper, S.J.G., Hammond, G.P., 2018. “Decarbonising” UK industry: Towards a cleaner

economy. Proc. Inst. Civ. Eng. Energy 171, 147–157. https://doi.org/

10.1680/jener.18.00007.

DEFRA, 2019. The draft Clean Air Strategy Summary of responses [WWW Document]

accessed 5.19.20 https://assets.publishing.service.gov.uk/government/uploads/

system/uploads/attachment_data/file/770714/draft-clean-air-strategy-consultsum-resp.pdf, .

DfT, 2020. Rail Delays and Compensation 2020 [WWW Document]. URL https://assets.

publishing.service.gov.uk/government/uploads/system/uploads/

14

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Transportation Research Interdisciplinary Perspectives 10 (2021) 100344

K.G. Logan et al.

Grid, National, 2018. Future Energy Scenarios [WWW Document] accessed 5.19.20

http://fes.nationalgrid.com/media/1363/fes-interactive-version-final.pdf, .

NIC, 2016. High Speed North. https://doi.org/10.1049/el:20061733

Nocera, S., Cavallaro, F., 2016. Economic valuation of Well-To-Wheel CO2 emissions

from freight transport along the main transalpine corridors. Transp. Res. Part D

Transp. Environ. 47, 222–236. https://doi.org/10.1016/j.trd.2016.06.004.

Nocera, S., Tonin, S., 2014. A Joint Probability Density Function for Reducing the

Uncertainty of Marginal Social Cost of Carbon Evaluation in Transport Planning. In:

de Sousa, J.F., Rossi, R. (Eds.), Computer-Based Modelling and Optimization in

Transportation. Springer International Publishing, Cham, pp. 113–126. https://doi.

org/10.1007/978-3-319-04630-3_9.

O’Beirne, P, Battersby, F, Mallett, A, Aczel, M, Makuch, K, Workman, M, Heap, R, 2020.

The UK net-zero target: Insights into procedural justice for greenhouse gas removal.

Environmental Science and Policy. https://doi.org/10.1016/j.envsci.2020.06.013.

Oliveira, L.C.R., Fox, C., Birrell, S., Cain, R., 2019. Analysing passengers’ behaviours

when boarding trains to improve rail infrastructure and technology. Robot. Comput.

Integr. Manuf. 57, 282–291. https://doi.org/10.1016/j.rcim.2018.12.008.

ONS, 2017. National Population Projections: 2016-based statistical bulletin [WWW

Document]

accessed

6.6.20

https://www.ons.gov.uk/

peoplepopulationandcommunity/populationandmigration/populationprojections/

bulletins/nationalpopulationprojections/2016basedstatisticalbulletin, .

ORR, 2017. Rail infrastructure, assets and environmental 2016–17 Annual Statistical

Release [WWW Document] accessed 5.19.20 https://dataportal.orr.gov.uk/media/

1520/rail-infrastructure-assets-environmental-2016-17.pdf, .

Oura, Y., Mochinaga, Y., Nagasawa, H., 1998. Railway Technology Today 3 (Edited by

Kanji Wako) Railway Electric Power Feeding Systems. Japan Railw. Transp. Rev. 8,

81–83.

Pale Blue Dot, 2017. Mighty CCS projects from little Acorns grow [WWW Document].

Mighty CCS Proj. from little Acorns grow. URL https://pale-blu.com/2017/05/10/

mighty-ccs-projects-from-little-acorns-grow/ (accessed 10.28.19).

Power, C., Mian, J., Spink, T., Abbott, S., Edwards, M., 2016. Development of an

Evidence-based Geotechnical Asset Management Policy for Network Rail. Great

Britain.

Procedia

Eng.

143,

726–733.

https://doi.org/10.1016/j.

proeng.2016.06.112.

Pridmore, A., 2009. Carbon footprinting of policies, programmes and projects [WWW

Document].

URL

http://www.pteg.net/system/files/general-docs/

AEAPTEGCarbonFootprintingfinalversion2009.pdf (accessed 5.19.20).

Priestley, S., 2019. UK Carbon Budgets [WWW Document]. House Commons Libr. URL

https://commonslibrary.parliament.uk/research-briefings/cbp-7555/

(accessed

5.19.20).

Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R.,

Sha, F., Riahi, K., Meinshausen, M., 2016. Paris Agreement climate proposals need a

boost to keep warming well below 2 °c. Nature 534, 631–639. https://doi.org/

10.1038/nature18307.

Royston, S.J., Gladwin, D.T., Stone, D.A., Ollerenshaw, R., Clark, P., 2019. Development

and Validation of a Battery Model for Battery Electric Multiple Unit Trains. IECON

2019–45th Annu. Conf. IEEE Ind. Electron. Soc. 1, 4563–4568. https://doi.org/

10.1109/iecon.2019.8927299.

Sasidharan, M., Burrow, M.P.N., Ghataora, G.S., 2020. A whole life cycle approach

under uncertainty for economically justifiable ballasted railway track maintenance.

Res. Transp. Econ. 80,. https://doi.org/10.1016/j.retrec.2020.100815 100815.

Sasidharan, M., Burrow, M.P.N., Ghataora, G.S., Torbaghan, M.E., 2017. A Review of

Risk Management Applications For Railways. Railw. Eng. 3100.

Progressive Energy Ltd, 2019. HyMotion Network-supplied hydrogen unlocks low

carbon transport opportunities [WW DOC] https://hynet.co.uk/app/uploads/2019/

06/15480_CADENT_HYMOTION_PROJECT_REP.pdf (Accessed 21/03/2021).

Sato, K., Koinuma, K., Tomii, N., 2018. A train rescheduling algorithm which minimizes

passengers’ dissatisfaction based on MILP formulation, in: CASPT2018-Conference

on Advanced Systems in Public Transport and TransitData 2018.

Saveyn, B., Paroussos, L., Ciscar, J.-C., 2012. Economic analysis of a low carbon path to

2050: A case for China. India and Japan. Energy Econ. 34, S451–S458. https://doi.

org/10.1016/j.eneco.2012.04.010.

The Scottish Government, 2017. Nuclear energy. [WWW DOC] https://www.gov.scot/

policies/nuclear-energy/ (Accessed 21/03/2021)..

Schiebahn, S., Grube, T., Robinius, M., Tietze, V., Kumar, B., Stolten, D., 2015. Power to

gas: Technological overview, systems analysis and economic assessment for a case

study in Germany. Int. J. Hydrogen Energy 40, 4285–4294. https://doi.org/

10.1016/j.ijhydene.2015.01.123.

Shafiei, E., Davidsdottir, B., Leaver, J., Stefansson, H., Asgeirsson, E.I., 2017. Energy,

economic, and mitigation cost implications of transition toward a carbon-neutral

transport sector: A simulation-based comparison between hydrogen and electricity.

J. Clean. Prod. 141, 237–247. https://doi.org/10.1016/J.JCLEPRO.2016.09.064.

Shimada, K., Tanaka, Y., Gomi, K., Matsuoka, Y., 2007. Developing a long-term local

society design methodology towards a low-carbon economy: An application to Shiga

Prefecture in Japan. Energy Policy 35, 4688–4703. https://doi.org/10.1016/j.

enpol.2007.03.025.

Shiraki, H., Matsumoto, K., Shigetomi, Y., Ehara, T., Ochi, Y., Ogawa, Y., 2020. Factors

affecting CO2 emissions from private automobiles in Japan: The impact of vehicle

occupancy. Appl. Energy 259,. https://doi.org/10.1016/j.apenergy.2019.114196

114196.

Sims, R.E.H., Hastings, A., Schlamadinger, B., Taylor, G., Smith, P., 2006. Energy crops:

Current status and future prospects. Glob. Chang. Biol. 12, 2054–2076. https://doi.

org/10.1111/j.1365-2486.2006.01163.x.

Smithers, A., 2020. National Rail Route Diagram [WWW Document]. http://www.

projectmapping.co.uk/Resources/Rail map v30c curvy.pdf (Accessed 13/02/.21).

Karimi, F., Goulas, A., Barzmehri, M.M., Putri, M.A., 2012. CCS potential in NorwayExploring the role of flagship projects: The Mongstad and Kårstø case studies. Int. J.

Sustain. Water Environ. Syst. 4, 23–34. https://doi.org/10.5383/swes.04.01.003.

Khan, U., Yamamoto, T., Sato, H., 2021. An insight into potential early adopters of

hydrogen fuel-cell vehicles in Japan. Int. J. Hydrogen Energy 46, 10589–10607.

https://doi.org/10.1016/j.ijhydene.2020.12.173.

Kobayashi, T., 2005. Breakthrough of Japanese Railway 1: Progress of Electric Railways

in Japan. Japan Railw. Transp. Rev. 42, 62–69.

Kucharski, J.B., Unesaki, H., 2017. Japan’s 2014 Strategic Energy Plan: A Planned

Energy System Transition. J. Energy 2017, 1–13. https://doi.org/10.1155/2017/

4107614.

Kuik, O., Tol, R.S.J., Brander, L., 2008. Marginal Abatement Costs of Carbon-Dioxide

Emissions:

Meta-Analysis.

ESRI

WP248,

June

2008,

seriesseriesEconomicSocialDublinworkingpapers.

Kurosaki, F., 2018. A study of vertical separation in Japanese passenger railways. Case

Stud. Transp. Policy 6, 391–399. https://doi.org/10.1016/j.cstp.2017.09.004.

Kurosaki, F., Alexandersson, G., 2018. Managing unprofitable passenger rail operations

in Japan - Lessons from the experience in Sweden. Res. Transp. Econ. 69, 460–469.

https://doi.org/10.1016/j.retrec.2018.07.019.

Kurosaki, F., Economics, T., 2017. A Comparative Study of Passenger Through Train

Operation Between Japan and Europe. J. East. Asia Soc. Transp. Stud. 12, 316–330.

https://doi.org/10.11175/easts.12.316.

Kusakabe, T., Iryo, T., Asakura, Y., 2010. Estimation method for railway passengers’

train choice behavior with smart card transaction data. Transportation (Amst). 37,

731–749. https://doi.org/10.1007/s11116-010-9290-0.

Lalive, R., Luechinger, S., Schmutzler, A., 2018. Does expanding regional train service

reduce air pollution? J. Environ. Econ. Manage. 92, 744–764. https://doi.org/

10.1016/J.JEEM.2017.09.003.

Lam, C.Y., Tai, K., 2020. Network topological approach to modeling accident causations

and characteristics: Analysis of railway incidents in Japan. Reliab. Eng. Syst. Saf.

193,. https://doi.org/10.1016/j.ress.2019.106626 106626.

LBST, 2020. 83 new hydrogen refuelling stations worldwide: Presse release [WWW

Document] accessed 5.19.20 https://www.h2stations.org/press-release-2020-0219/, .

Leiren, M.D., Inderberg, T.H.J., Rayner, T., 2020. Policy styles, opportunity structures

and proportionality: Comparing renewable electricity policies in the UK. Int. Polit.

Sci. Rev. https://doi.org/10.1177/0192512120907112

Lew, D., Piwko, D., Miller, N., Jordan, G., Clark, K., Freeman, L., 2010. How Do High

Levels of Wind and Solar Impact the Grid? The Western Wind and Solar Integration

Study (No. No. NREL/TP-5500-50057). Golden, CO (United States).

Li, L., 2019. Structure and influencing factors of CO2 emissions from transport sector in

three major metropolitan regions of China: estimation and decomposition.

Transportation (Amst). 46, 1245–1269. https://doi.org/10.1007/s11116-0179827-6.

Li, L., Zhang, X., 2020. Reducing CO2 emissions through pricing, planning, and

subsidizing rail freight. Transp. Res. Part D Transp. Environ. 87,. https://doi.org/

10.1016/j.trd.2020.102483 102483.

Libardo, A., Nocera, S., 2008. Transportation elasticity for the analysis of Italian

transportation demand on a regional scale. Traffic Eng. Control 49, 187–192.

Lin, B., Liu, C., Wang, H., Lin, R., 2017. Modeling the railway network design problem: A

novel approach to considering carbon emissions reduction. Transp. Res. Part D

Transp. Environ. 56, 95–109. https://doi.org/10.1016/j.trd.2017.07.008.

Liu, S., Wan, Y., Ha, H.-K., Yoshida, Y., Zhang, A., 2019. Impact of high-speed rail

network development on airport traffic and traffic distribution: Evidence from

China and Japan. Transp. Res. Part A Policy Pract. 127, 115–135. https://doi.org/

10.1016/j.tra.2019.07.015.

Logan, K.G., Nelson, J.D., Hastings, A., 2020a. Electric and Hydrogen Buses: Shifting

from Conventionally Fuelled Cars in the UK. Transp. Res. Part D Transp. Environ.

85. https://doi.org/10.1016/j.trd.2020.102350.

Logan, K.G., Nelson, J.D., McLellan, B.C., Hasting, A., Hastings, A., 2020b. Towards

electric and hydrogen Rail: Potential contribution to net zero. Transp. Res. Part D

Transp. Environ. 87,. https://doi.org/10.1016/j.trd.2020.102523 102523.

Logan, K.G., Nelson, J.D., Lu, X., Hastings, A., 2020c. UK and China: Will electric vehicle

integration meet Paris Agreement Targets?. Transportation Research Interdisciplinary

Perspectives 8, 100245. https://doi.org/10.1016/j.trip.2020.100245.

Logan, K.G., Nelson, J.D., Osbeck, C, Chapman, J.D., Hastings, A, 2020d. The

application of travel demand management initiatives within a university setting.

Case Studies on Transport Policy. https://doi.org/10.1016/j.cstp.2020.10.007.

Macola, I.G., 2020. Explained: the end of the rail franchising system in the UK [WWW

Document]. URL https://www.railway-technology.com/features/explained-theend-of-the-railway-franchising-system-in-the-uk/ (accessed 10.28.20).

Matsuo, Y., Endo, S., Nagatomi, Y., Shibata, Y., Komiyama, R., Fujii, Y., 2018. A

quantitative analysis of Japan’s optimal power generation mix in 2050 and the role

of CO2-free hydrogen. Energy 165, 1200–1219. https://doi.org/10.1016/j.

energy.2018.09.187.

METI, 2017. Basic Hydrogen Strategy [WWW Document] accessed 5.19.20 http://www.

meti.go.jp/english/press/2017/pdf/1226_003b.pdf, .

Mizutani, J., Fukuda, S., 2020. Issues on modal shift of freight from road to rail in Japan:

Review of rail track ownership, investment and access charges after the National

Railway restructuring. Res. Transp. Bus. Manag. 100484. https://doi.org/10.1016/

j.rtbm.2020.100484.

Görke, R.H., Hu, W., Dunstan, M.T., Dennis, J.s., Scott, S.A., 2018. Exploration of the

material property space for chemical looping air separation applied to carbon

capture

and

storage.

Applied

Energy.

https://doi.org/10.1016/j.

apenergy.2017.11.083.

15

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

K.G. Logan et al.

Transportation Research Interdisciplinary Perspectives 10 (2021) 100344

Staffell, I., Scamman, D., Velazquez Abad, A., Balcombe, P., Dodds, P.E., Ekins, P., Shah,

N., Ward, K.R., 2019. The role of hydrogen and fuel cells in the global energy

system. Energy Environ. Sci. 12, 463–491. https://doi.org/10.1039/c8ee01157e.

Statistica, 2020. Distribution of the payload distance in domestic passenger

transportation in Japan in fiscal year 2017, by mode of transport [WWW

Document]. URL https://www.statista.com/statistics/626747/japan-domesticpassenger-transport-volume-share-by-mode/?fbclid=IwAR2y981oXo5U7oRJkqXv

FS9_OxijA8tMZh 05Ykne7RmCjISNwhY65R0UM50 (accessed 5.27.20).

Steinberg, B.A., Scott, D.S., 1984. Hydrogen vs diesel fueled locomotives: a

technoeconomic appraisal. Int. J. Hydrogen Energy. https://doi.org/10.1016/

0360-3199(84)90037-5

Sugiyama, M., Fujimori, S., Wada, K., Endo, S., Fujii, Y., Komiyama, R., Kato, E.,

Kurosawa, A., Matsuo, Y., Oshiro, K., Sano, F., Shiraki, H., 2019. Japan’s long-term

climate mitigation policy: Multi-model assessment and sectoral challenges. Energy

167, 1120–1131. https://doi.org/10.1016/j.energy.2018.10.091.

Tanaka, Y., Abe, M., Sawada, Y., Tanase, D., Ito, T., Kasukawa, T., 2014. Tomakomai

CCS Demonstration Project in Japan, 2014 Update. Energy Pro 63, 6111–6119.

https://doi.org/10.1016/j.egypro.2014.11.643.

The World Bank, 2018. Electric power transmission and distribution losses (% of output)

[WWW Document] accessed 6.3.20 https://data.worldbank.org/indicator/EG.ELC.

LOSS.ZS, .

Thomas, J.M., Edwards, P.P., Dobson, P.J., Owen, G.P., 2020. Decarbonising energy:

The developing international activity in hydrogen technologies and fuel cells. J.

Energy Chem. 51, 405–415. https://doi.org/10.1016/j.jechem.2020.03.087.

Trencher, G., Taeihagh, A., Yarime, M., 2020. Overcoming barriers to developing and

diffusing fuel-cell vehicles: Governance strategies and experiences in Japan. Energy

Policy 142,. https://doi.org/10.1016/j.enpol.2020.111533 111533.

UNFCCC, 2008. Kyoto Protocol Reference Manual [WWW Document]. United Nations

Framew. Conv. Clim. Chang. https://doi.org/10.5213/jkcs.1998.2.2.62

Vivoda, V., 2012. Japan’s energy security predicament post-Fukushima. Energy Policy

46, 135–143. https://doi.org/10.1016/J.ENPOL.2012.03.044.

Wang, T., Qu, Z., Yang, Z., 2020. How does the UK transport system respond to the risks

posed by climate change? An analysis from the perspective of adaptation planning.

Marit. Transp. Reg. Sustain. 85–106. https://doi.org/10.1016/B978-0-12-8191347.00006-X.

Watabe, A., Leaver, J., Ishida, H., Shafiei, E., 2019. Impact of low emissions vehicles on

reducing greenhouse gas emissions in Japan. Energy Policy 130, 227–242. https://

doi.org/10.1016/j.enpol.2019.03.057.

Williams Rail Review, 2019. The role of the railway in Great Britain [WWW Document]

accessed 5.19.20 https://assets.publishing.service.gov.uk/government/uploads/

system/uploads/attachment_data/file/782063/role-of-railway-evidence-paper-railreview.pdf, .

Yamamoto, H., 1993. Transportation in the Postwar Recovery Period (1946-1954):

Policy, in: Technological Innovation and the Development of Transportation in

Japan. United Nations University Press.

Zenith, F., Isaac, R., Hoffrichter, A., Thomassen, M.S., Møller-Holst, S., 2019. Technoeconomic analysis of freight railway electrification by overhead line, hydrogen and

batteries: Case studies in Norway and USA. Proc. Inst. Mech. Eng. Part F J. Rail

Rapid Transit. https://doi.org/10.1177/0954409719867495

Zhou, X., Yano, T., Kojima, S., 2013. Proposal for a national inventory adjustment for trade

in the presence of border carbon adjustment: Assessing carbon tax policy in Japan.

Energy Policy 63, 1098–1110. https://doi.org/10.1016/j.enpol.2013.09.016.

16

...

参考文献をもっと見る