リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Relationship between health literacy and physical function of patients participating in phase I cardiac rehabilitation: a multicenter clinical study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Relationship between health literacy and physical function of patients participating in phase I cardiac rehabilitation: a multicenter clinical study

Kanejima, Yuji Izawa, P. Kazuhiro Kitamura, Masahiro Ishihara, Kodai Ogura, Asami Kubo, Ikko Nagashima, Hitomi Tawa, Hideto Matsumoto, Daisuke Shimizu, Ikki 神戸大学

2023.08

概要

Health literacy (HL) is an important decision factor for health. Both low HL and low physical function cause adverse events in cardiovascular disease patients, but their relationship is not well documented. To clarify the relationship between HL and physical function of patients participating in cardiac rehabilitation and calculate the cutoff value of the 14-item HL scale (HLS) for low handgrip strength, this multicenter clinical study named the Kobe-Cardiac Rehabilitation project for people around the World (K-CREW) was conducted among four affiliated hospitals with patients who underwent cardiac rehabilitation. We used the 14-item HLS to assess HL, and the main outcomes were handgrip strength and Short Physical Performance Battery (SPPB) score. The study included 167 cardiac rehabilitation patients with a mean age of 70.5 ± 12.8 years, and the ratio of males was 74%. Among them, 90 patients (53.9%) had low HL and scored significantly lower in both handgrip strength and SPPB. Multiple linear regression analysis revealed that HL was a determinant factor (β = 0.118, p = 0.04) for handgrip strength. Receiver operating characteristic analysis revealed the cutoff value of the 14-item HLS for screening for low handgrip strength was 47.0 points, and the area under the curve was 0.73. This study showed that HL was significantly associated with handgrip strength and SPPB in cardiac rehabilitation patients and suggests the possibility of early screening for low HL to improve physical function in cardiac rehabilitation patients with low HL.

この論文で使われている画像

参考文献

1. Kickbusch I, Pelikan JM, Tsouros FA& AD (2013) Health literacy: the solid facts. UN City,

Marmorvej 51 DK-2100 Copenhagen Ø, Denmark: World Health Organization. Regional

Office for Europe.

2. Nutbeam D (2008) The evolving concept of health literacy. Soc Sci Med 67: 2072–2078.

3. Wenger NK (2008) Current Status of Cardiac Rehabilitation. J Am Coll Cardiol 51: 1619–

1631.

4. Jayasinghe UW, Harris MF, Parker SM, Litt J, Driel M van, Mazza D, Mar CD, Lloyd J,

Smith J, Zwar N, Taylor R (2016) The impact of health literacy and life style risk factors

on health-related quality of life of Australian patients. Health Qual Life Out 14: 68.

5. Cheng Y-L, Shu J-H, Hsu H-C, Liang Y, Chou R-H, Hsu P-F, Wang Y-J, Ding Y-Z, Liou TL, Wang Y-W, Huang S-S, Lin C-C, Lu T-M, Leu H-B, Lin S-J, Chan W-L (2018) High

health literacy is associated with less obesity and lower Framingham risk score: Sub-study

of the VGH-HEALTHCARE trial. Plos One 13: e0194813

6. Magnani JW, Mujahid MS, Aronow HD, Cené CW, Dickson VV, Havranek E, Morgenstern

LB, Paasche-Orlow MK, Pollak A, Willey JZ (2018) Health Literacy and Cardiovascular

Disease. Circulation 138: e48–e74

7. Ghisi GL de M, Chaves GS da S, Britto RR, Oh P (2017) Health literacy and coronary

artery disease: A systematic review. Patient Educ Couns 101: 177–184.

22

8. Cajita MI, Cajita TR, Han H-R (2016) Health Literacy and Heart Failure. J Cardiovasc

Nurs 31: 121–30.

9. Pavasini R, Serenelli M, Celis-Morales CA, Gray SR, Izawa KP, Watanabe S, ColinRamirez E, Castillo-Martínez L, Izumiya Y, Hanatani S, Onoue Y, Tsujita K, Macdonald

PS, Jha SR, Roger VL, Manemann SM, Sanchis J, Ruiz V, Bugani G, Tonet E, Ferrari R,

Volpato S, Campo G (2019) Grip strength predicts cardiac adverse events in patients with

cardiac disorders: an individual patient pooled meta-analysis. Heart 105: 834.

10. Kodama S, Saito K, Tanaka S, Maki M, Yachi Y, Asumi M, Sugawara A, Totsuka K,

Shimano H, Ohashi Y, Yamada N, Sone H (2009) Cardiorespiratory Fitness as a

Quantitative Predictor of All-Cause Mortality and Cardiovascular Events in Healthy Men

and Women: A Meta-analysis. Jama 301: 2024–2035.

11. Kamiya K, Masuda T, Tanaka S, Hamazaki N, Matsue Y, Mezzani A, Matsuzawa R,

Nozaki K, Maekawa E, Noda C, Yamaoka-Tojo M, Arai Y, Matsunaga A, Izumi T, Ako J

(2015) Quadriceps Strength as a Predictor of Mortality in Coronary Artery Disease. Am J

Medicine 128: 1212–1219.

12. Beaudart C, Rolland Y, Cruz-Jentoft AJ, Bauer JM, Sieber C, Cooper C, Al-Daghri N,

Carvalho IA de, Bautmans I, Bernabei R, Bruyère O, Cesari M, Cherubini A, DawsonHughes B, Kanis JA, Kaufman J-M, Landi F, Maggi S, McCloskey E, Petermans J, Mañas

LR, Reginster J-Y, Roller-Wirnsberger R, Schaap LA, Uebelhart D, Rizzoli R, Fielding RA

23

(2019) Assessment of Muscle Function and Physical Performance in Daily Clinical

Practice. Calcified Tissue Int 105: 1–14.

13. Sasaki H, Kasagi F, Yamada M, Fujita S (2007) Grip Strength Predicts Cause-Specific

Mortality in Middle-Aged and Elderly Persons. Am J Medicine 120: 337–342.

14. Sugie M, Harada K, Takahashi T, Nara M, Ishikawa J, Tanaka J, Koyama T, Fujimoto H,

Obuchi S, Kyo S, Ito H (2018) Relationship between hand grip strength and peak VO2 in

community‐dwelling elderly outpatients. Jcsm Clin Reports 3: 1–10.

15. Rantanen T, Guralnik JM, Foley D, Masaki K, Leveille S, Curb JD, White L (1999)

Midlife Hand Grip Strength as a Predictor of Old Age Disability. Jama 281: 558–560.

16. Chen L-K, Woo J, Assantachai P, Auyeung T-W, Chou M-Y, Iijima K, Jang HC, Kang L,

Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee W-J, Lee Y, Liang C-K, Lim

J-Y, Lim WS, Peng L-N, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita

M, Arai H (2020) Asian Working Group for Sarcopenia: 2019 Consensus Update on

Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc 21: 300-307.e2.

17. Chung KC, Song JW, Group WS. (2010) A Guide to Organizing a Multicenter Clinical

Trial. Plast Reconstr Surg 126: 515–523.

18. Bjarnason-Wehrens B, McGee H, Zwisler A-D, Piepoli MF, Benzer W, Schmid J-P,

Dendale P, Pogosova N-GV, Zdrenghea D, Niebauer J, Mendes M (2010) Cardiac

24

rehabilitation in Europe: results from the European Cardiac Rehabilitation Inventory

Survey. Eur J Cardiovasc Prev Rehabil 17: 410–418.

19. Kitamura M, Izawa KP, Ishihara K, Yaekura M, Nagashima H, Yoshizawa T, Okamoto N

(2021) Predictors of activities of daily living at discharge in elderly patients with heart

failure with preserved ejection fraction. Heart Vessels 36: 509–517.

20. Bouillanne O, Morineau G, Dupont C, Coulombel I, Vincent J-P, Nicolis I, Benazeth S,

Cynober L, Aussel C (2005) Geriatric Nutritional Risk Index: a new index for evaluating

at-risk elderly medical patients. Am J Clin Nutrition 82: 777–783.

21. Charlson ME, Pompei P, Ales KL, MacKenzie CR (1987) A new method of classifying

prognostic comorbidity in longitudinal studies: Development and validation. J Chron Dis

40: 373–383.

22. Suka M, Odajima T, Kasai M, Igarashi A, Ishikawa H, Kusama M, Nakayama T, Sumitani

M, Sugimori H (2013) The 14-item health literacy scale for Japanese adults (HLS-14).

Environ Health Prev Med 18: 407–415.

23. Guralnik JM, Simonsick EM, Ferrucci L, Glynn RJ, Berkman LF, Blazer DG, Scherr PA,

Wallace RB (1994) A Short Physical Performance Battery Assessing Lower Extremity

Function: Association With Self-Reported Disability and Prediction of Mortality and

Nursing Home Admission. J Gerontology 49: M85–M94.

25

24. Jakobsen LH, Rask IK, Kondrup J (2010) Validation of handgrip strength and endurance

as a measure of physical function and quality of life in healthy subjects and patients.

Nutrition 26: 542–550.

25. Chiarantini D, Volpato S, Sioulis F, Bartalucci F, Bianco LD, Mangani I, Pepe G, Tarantini

F, Berni A, Marchionni N, Bari MD (2010) Lower Extremity Performance Measures

Predict Long-Term Prognosis in Older Patients Hospitalized for Heart Failure. J Card Fail

16: 390–395.

26. Guerra RS, Fonseca I, Pichel F, Restivo MT, Amaral TF (2015) Handgrip Strength and

Associated Factors in Hospitalized Patients. JPEN J Parenter Enteral Nutr 39: 322–330.

27. Lima TR de, Silva DAS, Castro JAC de, Christofaro DGD (2017) Handgrip strength and

associated sociodemographic and lifestyle factors: A systematic review of the adult

population. J Bodyw Mov Ther 21: 401–413.

28. Basílio ML, Faria-Fortini I de, Polese JC, Scianni AA, Faria CD, Teixeira-Salmela LF

(2016) Handgrip strength deficits best explain limitations in performing bimanual activities

after stroke. J Phys Ther Sci 28: 1161–1165.

29. Akobeng AK (2007) Understanding diagnostic tests 3: receiver operating characteristic

curves. Acta Paediatr 96: 644–647.

30. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for

medical statistics. Bone Marrow Transpl 48: 452–458.

26

31. Rickham PP (1964) Human Experimentation: Code of Ethics of W.M.A. Brit Med J 2:

177.

32. Huang CH, Lai Y-C, Lee YC, Teong XT, Kuzuya M, Kuo K-M (2018) Impact of Health

Literacy on Frailty among Community-Dwelling Seniors. J Clin Medicine 7: 481.

33. Izawa KP, Watanabe S, Osada N, Kasahara Y, Yokoyama H, Hiraki K, Morio Y, Yoshioka

S, Oka K, Omiya K (2009) Handgrip strength as a predictor of prognosis in Japanese

patients with congestive heart failure. Eur J Cardiovasc Prev Rehabil 16: 21–27.

34. Winter JE, MacInnis RJ, Wattanapenpaiboon N, Nowson CA (2014) BMI and all-cause

mortality in older adults: a meta-analysis. Am J Clin Nutrition 99: 875–890.

35. Bohannon RW (2019) Minimal clinically important difference for grip strength: a

systematic review. J Phys Ther Sci 31: 75–78.

36. Guralnik J, Bandeen-Roche K, Bhasin SAR, Eremenco S, Landi F, Muscedere J, Perera S,

Reginster J-Y, Woodhouse L, Vellas B (2020) Clinically Meaningful Change for Physical

Performance: Perspectives of the ICFSR Task Force. J Frailty Aging 9: 9–13.

37. Guntzviller LM, King AJ, Jensen JD, Davis LA (2017) Self-Efficacy, Health Literacy, and

Nutrition and Exercise Behaviors in a Low-Income, Hispanic Population. J Immigr Minor

Healt 19: 489–493.

38. Osborn CY, Paasche-Orlow MK, Bailey SC, Wolf MS (2011) The Mechanisms Linking

Health Literacy to Behavior and Health Status. Am J Health Behav 35: 118–28.

27

39. Safeer RS, Cooke CE, Keenan J (2006) The impact of health literacy on cardiovascular

disease. Vasc Heal Risk Management 2: 457–464.

40. Kanejima Y, Shimogai T, Kitamura M, Ishihara K, Izawa KP (2022) Impact of health

literacy in patients with cardiovascular diseases: A systematic review and meta-analysis.

Patient Educ Couns 105: 1793–1800.

41. Yamamoto S, Yamaga T, Nishie K, Sakai Y, ishida T, Oka K, Ikegami S, Horiuchi H

(2020) Impact of physical performance on prognosis among patients with heart failure:

Systematic review and meta-analysis. J Cardiol 76: 139–146.

42. Japanese Circulation Society/the Japanese Association of Cardiac Rehabilitation Joint

Working Group (2022) JCS/JACR 2021 Guideline on Rehabilitation in Patients With

Cardiovascular Disease. Circ J. 87:155-235.

28

Figure Legends

Figure. 1

Flow chart of patient assessment.

Figure. 2

Flow chart of the study participants.

Figure. 3

Receiver operating characteristic analysis for handgrip strength. AUC: area under

the curve; CI: confidence interval.

29

Table 1 Baseline clinical characteristics of the low and high health literacy groups.

Total

Low HL

High HL

t or χ2

p Value

(n=167)

(n=90)

(n=77)

value

70.5 ± 12.8

73.4 ± 12.8

67.1 ± 12.1

3.27

< 0.01

124 (74)

66 (73)

58 (75)

0.01

0.86

23.8 ± 4.4

22.9 ± 4.4

24.9 ± 4.3

2.93

< 0.01

No

62 (37)

35 (39)

27 (35)

0.27

0.88

Past

71 (43)

37 (41)

34 (44)

Current

34 (20)

18 (20)

16 (21)

89 (53)

41 (46)

48 (62)

4.05

0.04

No

17 (10)

9 (10)

8 (10)

6.42

0.04

Ex

31 (19)

23 (26)

8 (10)

Yes

119 (71)

58 (64)

61 (79)

132 (79)

65 (72)

67 (87)

4.62

0.02

18.9 ± 11.4

19.5 ± 11.8

18.2 ± 11.0

0.72

0.47

Age, years

Male ratio, n (%)

BMI, kg/m²

Smoking, n (%)

Employment, n (%)

Marriage, n (%)

Living together (%)

Admission duration,

days

Comorbidities, n (%)

Hypertension

110 (66)

59 (66)

51 (66)

1.00

Diabetes

54 (32)

32 (36)

22 (29)

0.63

0.41

Dyslipidemia

98 (59)

49 (54)

49 (64)

1.09

0.27

79 (47)

53 (59)

26 (34)

9.52

< 0.01

Arrhythmia

68 (41)

42 (47)

26 (34)

2.86

0.09

Renal dysfunction

41 (25)

27 (30)

14 (18)

2.52

0.10

Stroke

22 (13)

18 (20)

4 (5)

< 0.01

Chronic lung disease

19 (11)

10 (11)

9 (12)

< 0.01

1.00

Locomotive disease

28 (17)

19 (21)

9 (12)

2.01

0.15

2.36 ± 2.01

2.76 ± 1.95

1.90 ± 1.99

2.81

< 0.01

Hemoglobin, g/dL

13.1 ± 2.38

12.6 ± 2.5

13.7 ± 2.1

3.12

< 0.01

Albumin, g/dL

3.71 ± 0.49

4.0 ± 0.5

3.8 ± 0.5

0.68

0.50

WBC, ×109/L

68.7 ± 46.8

66.9 ± 35.2

70.9 ± 57.9

0.55

0.59

BNP, pg/mL

494 ± 651

564 ± 622

411 ± 682

1.51

0.13

eGFR, mL/min/1.73m2

53.9 ± 22.6

50.8 ± 25.1

57.5 ± 18.9

1.92

0.06

GNRI

100.5 ± 11.8

98.4 ± 11.4

103.0 ± 12.0

2.50

0.01

Congestive heart

failure

Charlson Comorbidity

Index

Medications, n (%)

Beta blocker

121 (72)

64 (71)

57 (74)

0.06

0.73

ARB

52 (31)

25 (28)

27 (35)

0.72

0.32

ACE-I

51 (30)

22 (23)

31 (39)

4.07

0.04

Diuretic

99 (59)

58 (64)

41 (53)

1.72

0.16

Nitric acid

20 (12)

11 (12)

9 (12)

< 0.01

1.00

Ca antagonist

39 (23)

29 (32)

10 (13)

7.54

< 0.01

Statin

101 (60)

46 (51)

55 (71)

6.34

0.01

Functional

20.1 ± 4.4

18.0 ± 4.3

22.6 ± 3.0

6.97

< 0.01

Communicative

16.3 ± 4.7

13.3 ± 3.9

19.8 ± 2.5

12.5

< 0.01

Critical

11.4 ± 3.5

9.7 ± 3.2

13.4 ± 2.7

7.11

< 0.01

Total

47.7 ± 9.3

40.9 ± 6.6

55.7 ± 4.0

17.2

< 0.01

Handgrip strength, kgf

28.1 ± 11.1

24.8 ± 9.8

31.9 ± 11.3

3.99

< 0.01

SPPB total, points

10.6 ± 2.1

10.1 ± 2.3

11.2 ± 1.6

3.32

< 0.01

Balance test, points

3.72 ± 0.71

3.60 ± 0.86

3.85 ± 0.48

2.34

0.02

Gait speed, m/s

0.91 ± 0.28

0.82 ± 0.27

1.0 ± 0.3

2.13

< 0.01

5-Chair stand test, sec

10.4 ± 5.2

11.2 ± 4.9

9.4 ± 5.5

2.15

0.03

14-items HLS, points

ACE-I: angiotensin converting enzyme inhibitor; ARB: angiotensin II receptor blocker; BMI:

body mass index; BNP: brain natriuretic peptide; eGFR: estimated glomerular filtration rate;

GNRI: Geriatric Nutritional Risk Index; HL: health literacy; SPPB: Short Physical Performance

Battery; WBC: white blood cell; 14-items HLS: 14-items Health literacy scale.

Table 2

Correlation coefficient test between health literacy and handgrip strength (n =

167)

Health literacy

Correlation coefficient

p-value

Functional

0.28 (0.14- 0.42)

< 0.01

Communicative

0.23 (0.09- 0.37)

< 0.01

Critical

0.19 (0.04- 0.33)

0.01

Total

0.32 (0.18- 0.45)

<0.01

Table 3

Multiple linear regression test for handgrip

Univariate model

Multivariate model

Variable

β (95% CI)

p value

β (95% CI)

p value

Age

-0.57 (-0.67- -0.47)

< 0.01

-0.29 (-0.39- -0.19)

< 0.01

Sex

16.6 (13.7- 19.5)

< 0.01

11.7 (9.09- 14.4)

< 0.01

BMI

1.15 (0.82 - 1.49)

< 0.01

0.05 (-0.31- 0.41)

0.78

Disease code

1.67 (0.45- 2.88)

< 0.01

0.30 (-0.46- 1.06)

0.43

Congestive heart failure

-8.58 (-11.7- -5.44)

< 0.01

-2.75 (-5.30- -0.20)

0.03

Stroke

-6.06 (-11.0- -1.12)

0.02

-1.83 (-4.91- 1.25)

0.24

Charlson Comorbidity Index

-1.90 (-2.70- -1.11)

< 0.01

-0.06 (-0.70- 0.58)

0.86

GNRI

0.49 (0.36- 0.61)

< 0.01

0.11 (-0.02- 0.25)

0.10

Smoking

11.1 (8.02- 14.2)

< 0.01

0.38 (-2.06- 2.83)

0.76

14-Item health literacy scale

0.39 (0.21- 0.56)

< 0.01

0.118 (0.07- 0.23)

0.04

β: standardized partial regression coefficient; BMI: body mass index; BNP: brain natriuretic peptide; CI:

confidence interval; eGFR: estimated glomerular filtration rate; GNRI: Geriatric Nutritional Risk Index

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る