リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「釣鐘状花における夜行性ガ類による花粉媒介」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

釣鐘状花における夜行性ガ類による花粉媒介

船本, 大智 神戸大学

2021.03.25

概要

第1章 序論
 花と花粉媒介者の相互作用は陸上生態系において非常に重要な相互作用である。特定の花粉媒介動物への収斂的な適応によって、異なる分類群の植物種でも類似した花形質をもつことがあり、この傾向は送粉シンドロームと呼ばれている。夜行性ガ類による花粉媒介に対して特殊化した花(ガ媒花)は、強く甘い匂いを放つ白色で細長い花をもつことが多い。訪花性ガ類はスズメガ類と着地訪花性ガ類に大きく分けることが出来る。しかし、着地訪花性ガ類の研究はスズメガ類と比べて大きく遅れている。近年の研究によって、着地訪花性ガ類が花粉媒介する花において、典型的なガ媒花の特徴に当てはまらない釣鐘状の花をもつ種が報告されている。

第2章 早春に咲くキブシの花粉媒介におけるガ類の重要性
 早春は天候の変化が激しいため、花粉媒介宥の利用可能性が予測できない傾向があると言われている。多様なグループの花粉媒介者を利用することは、花粉媒介者の利用可能性が予測できない条件で有利だと考えられる。昼行性のハナバチ類や双翅民は早春における簠要な花粉媒介者だとこれまで考えられてきた。一方で、いくつかの早春に咲く植物種は昆行性の訪花者に加えて、夜行性ガ類にも訪花されることが知られている。しかし、早春に咲く花において昼行性昆虫類と夜行性ガ類の花粉媒介における相対的重要性を明らかにした研究事例は少ない。本研究は、釣鐘状の花をもち昼行性昆虫類と夜行性ガ類の阿者の訪花を受けることが知られているキブシ(キブシ科)において、昼行性昆虫と夜行性ガ類の花粉媒介における相対的重要性を明らかにするための調査を2016から2019年に近畿地方2地点において行った。その結果、キブシはいずれの年と場所でも昼行性昆虫類と夜行性ガ類の両者に訪花され、昼行性昆虫類と夜行性ガ類の両者に花粉が付着していることが分かった。昼行性昆虫類は夜行性ガ類よりも訪問数が多い傾向があり、種子生産への貢献度は昼行性昆虫類が夜行性ガ類よりも大きかった。夜行性ガ類は、天候の変化が激しい早春に咲くキブシの花粉媒介において捕償的な役割を果たす可能性がある。

第3章 ツリガネニンジンの花粉媒介におけるガ類の重要性
 ツリガネニンジン(キキョウ科)は青色で釣鐘状の花をもち、典型的なハナバチ媒花の特徴にあてはまる。しかし、近年になりツリガネニンジンの花は夜間にガ類に訪花されることが報告されている。したがって、ツリガネニンジンでは花形質から予測される花粉媒介者と実際の訪花者の間に食い違いがある。そこで本研究ではツリガネニンジンの花粉媒介者と花形質を明らかにするための調査を2013から2015年に東日本の2地点においておこなった。その結果、ツリガネニンジンは昼行性昆虫類と夜行性ガ類の両者に訪花されるが、種子生産に貢献していたのは主に夜行性ガ類であることが分かった。また、開花および雄期から雌期の変化は夜間に起き、蜜は主に夜間に分泌された。つまり、ツリガネニンジンの花形態と花色はハナバチ媒花的な特徴をもつが、実際には夜行性ガ類に花粉媒介され、さらに時間に関連した形質は夜行性ガ類による花粉媒介に適応的だと考えられる花形質をもつことがわかった。

第4章 ヒナシャジンの花粉媒介におけるガ類の重要性
 一般的に、典型的なガ媒花は細長い筒をもち、その花粉は訪花するガ類の頭部(複眼や口吻)に付着する。しかし、釣鐘状のガ媒花では花粉の付着位置が典型的なガ媒花と異なる可能性がある。そこで、本研究では、2016と2017年に高知県においてヒナシャジン(キキョウ科)の花粉媒介様式を調べた。特に、夜行性ガ類の体表上の花粉付着部位に着目した。その結梁、ヒナシャジンは昼行性昆虫類と夜行性ガ類の両者に訪花されるが、種子生産に貢献していたのは主に夜行性ガ類であることが示された。ヒナシャジンの花粉は夜行性ガ類の腹而に特異的に付着しており、頭部にはほとんど付着していなかった。開花および雄期から雌期の変化は夜間に起き、蜜は主に夜間に分泌された。したがって、時間に関わる花形質は夜行性ガ類の活動時間と符合していた。ヒナシャジンなどの夜行性ガ類に花粉媒介される釣鐘状に見られる花冠から突出した繁殖器官は、下向きの花にぶら下がって採餌するガ類の腹面に花粉を付着させるうえで適応的な形質である可能性がある。

第5章 総合考察
 着地訪花性ガ類の花粉媒介者としての重要性は見過ごされてきた。しかし、本研究で調査を行った釣鐘状花に訪花したガ類のほとんどは着地訪花性ガ類であり、スズメガ類はほとんど訪花しなかった。ヤガ科やシャクガ科などの着地訪花性ガ類は低温期にも訪花活動をすることができるため、早春や高山のような低温な季節や環境で重要な花粉媒介者として機能する可能性がある。また、さまざまな訪花動物群に花粉媒介を依存するジュネラリスト的な植物において着地訪花性ガ類は花粉媒介者として機能しうる。釣鐘状花は一般的にハナバチ媒花の特徴だと考えられてきた。しかし、釣鐘状花には着地訪花性ガ類が重要な花粉媒介者である種が存在し、それらの開花時刻や蜜分泌量の経時変化などの時間に関わる形質は着地訪花性ガ類への適応を示すことが分かった。釣鐘状花のような下向きの花は多くのタイプの訪花昆虫類を排除すると考えられてきた。しかし、着地訪花性ガ類は下向きの花に容易に訪花することが出来るのかもしれない。また、釣鐘状の花形態は着地訪花性ガ類の体表に効率的に花粉を付着させる上で適応的な可能性がある。本研究の結果は花形質と花粉媒介者の対応関係をより正確に理解する上で、訪花動物群ごとの花粉媒介における相対的貢献度を評価することや、花色と花形態に加えて開花時刻などの時間に関わる花形質を調べることが重要なことを示唆する。

この論文で使われている画像

参考文献

Abe, T. 2007. Sex expression and reproductive biology of Stachyurus praecox (Stachyuraceae). Bulletin of the Forestry and Forest Products Research Institute 6:151–156.

Aigner, P. A. 2001. Optimality modeling and fitness trade-offs: when should plants become pollinator specialists? Oikos 95:177–184.

Alonso, C. 2004. Early blooming’s challenges: extended flowering season, diverse pollinator assemblage and the reproductive success of gynodioecious Daphne laureola. Annals of Botany 93:61–66.

有田豊・大島一正・岸田泰則・久万田敏夫・黒子浩・小林茂樹・駒井古実・佐々木明夫・神保宇嗣・那須義次・橋本里志・広渡俊哉・間野隆裕・山中浩・吉安裕. 2013. 日本産蛾類標準図鑑IV. 那須義次・広渡俊哉・岸田泰則編. 学研教育出版, 東京.

Armbruster, S. W., T. F. Hansen, C. Pélabon, R. Pérez-Barrales, and J. Maad. 2009. The adaptive accuracy of flowers: measurement and microevolutionary patterns. Annals of Botany 103:1529–1545.

Armbruster, S. W., and N. Muchhala. 2009. Associations between floral specialization and species diversity: cause, effect, or correlation? Evolutionary Ecology 23:159–179.

Atwater, M. M. 2013. Diversity and nectar hosts of flower-settling moths within a Florida sandhill ecosystem. Journal of Natural History 47:2719–2734.

Baker, H. G. 1961. The adaptation of flowering plants to nocturnal and crepuscular pollinators. The Quarterly Review of Biology 36:64–73.

Banza, P., A. D. F. Belo, and D. M. Evans. 2015. The structure and robustness of nocturnal lepidopteran pollen-transfer networks in a biodiversity hotspot. Insect Conservation and Diversity 8:538–546.

Banza, P., C. J. Macgregor, A. D. F. Belo, R. Fox, M. J. O. Pocock, and D. M. Evans. 2019. Wildfire alters the structure and seasonal dynamics of nocturnal pollen-transport networks. Functional Ecology 33:1882–1892.

Bawa, K. S. 1990. Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology and Systematics 21:399–422.

Benjamini, Y., and Y. Hochberg. 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 57:289–300.

Benning, J. W. 2015. Odd for an ericad: nocturnal pollination of Lyonia lucida (Ericaceae). The American Midland Naturalist 174:204–217.

Bishop, J. A., and W. S. Armbruster. 1999. Thermoregulatory abilities of Alaskan bees: effects of size, phylogeny and ecology. Functional Ecology 13:711–724.

Blüthgen, N., and A. M. Klein. 2011. Functional complementarity and specialisation: the role of biodiversity in plant-pollinator interactions. Basic and Applied Ecology 12:282–291.

Boberg, E., R. Alexandersson, M. Jonsson, J. Maad, J. Ågren, and L. A. Nilsson. 2014. Pollinator shifts and the evolution of spur length in the moth-pollinated orchid Platanthera bifolia. Annals of Botany 113:267–275.

Borges, R. M. 2018. Dark matters: challenges of nocturnal communication between plants and animals in delivery of pollination services. Yale Journal of Biology and Medicine 91:33–42.

Borges, R. M., H. Somanathan, and A. Kelber. 2016. Patterns and processes in nocturnal and crepuscular pollination services. The Quarterly Review of Biology 91:389–418.

Brantjes, N. B. M. 1978. Sensory responses to flowers in night-flying moths. Pages 13–19. The Pollination of Flowers by Insects. Linnean So. Academic Press, London.

Buxton, M. N., B. J. Anderson, R. J. B. Hoare, and J. M. Lord. 2019. Are moths the missing pollinators in Subantarctic New Zealand? Polar Research 38:3545.

Carolin, R. C. 1960. The structures involved in the presentation of pollen to visiting insects in the order Campanales. Proceedings of the Linnean Society of New South Wales 85:197–207.

Casey, T. M. 1976. Flight energetics of sphinx moths: power input during hovering flight. Journal of Experimental Biology 64: 529–543.

Casey, T. M., and B. A. Joos. 1983. Morphometrics, conductance, thoracic temperature, and flight energetics of noctuid and geometrid moths. Physiological Zoology 56: 160–173.

Castañeda-Zárate, M., S. D. Johnson, and T. van der Niet. 2020. Food reward chemistry explains a novel pollinator shift and vestigialization of long floral spurs in an orchid. Current Biology 31: 238–246.

Castellanos, M. C., P. Wilson, and J. D. Thomson. 2003. Pollen transfer by hummingbirds and bumblebees, and the divergence of pollination modes in Penstemon. Evolution 57:2742–2752.

Castro, S., P. Silveira, and L. Navarro. 2008. How does secondary pollen presentation affect the fitness of Polygala vayredae (Polygalaceae)? American Journal of Botany 95:706–712.

Darwin, C. . 1862. On the various contrivances by which British and foreign orchids are fertilised by insects. John Murray, London.

Dellinger, A. S. 2020. Pollination syndromes in the 21st century: where do we stand and where may we go? New Phytologist 228: 1193–1213.

de Santiago-Hernández, M. H., S. Martén-Rodríguez, M. Lopezaraiza-Mikel, K. Oyama, A. González-Rodríguez, and M. Quesada. 2019. The role of pollination effectiveness on the attributes of interaction networks: from floral visitation to plant fitness. Ecology 100:e02803.

Devoto, M., S. Bailey, and J. Memmott. 2011. The “night shift”: nocturnal pollen-transport networks in a boreal pine forest. Ecological Entomology 36:25–35.

Dobson, H. E. M. 2006. Relationship between floral fragrance composition and type of pollinator. Pages 147–198 in N. Dudareva and E. Pichersky, editors. Biology of Floral Scent. Taylor and Francis, Boca Raton.

Dupont, Y. L., and M. Kato. 1999. Phenology and flower-visiting entomofauna of six species of Lindera (Lauraceae) in Japan. Nordic Journal of Botany 19:707–718.

Epps, M. J., S. E. Allison, and L. M. Wolfe. 2015. Reproduction in flame azalea (Rhododendron calendulaceum, Ericaceae): a rare case of insect wing pollination. The American Naturalist 186:294–301.

Faegri, K., and L. van der Pijl. 1971. The Principles of Pollination Ecology. Pergamon Press, Oxford.

Fenster, C. B., W. S. Armbruster, and M. R. Dudash. 2009. Specialization of flowers: is floral orientation an overlooked first step? New Phytologist 183:502–506.

Fenster, C. B., W. S. Armbruster, P. Wilson, M. R. Dudash, and J. D. Thomson. 2004. Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution and Systematics 35:375–403.

Freitas, L., and M. Sazima. 2006. Pollination biology in a tropical high-altitude grassland in Brazil: interactions at the community level. Annals of the Missouri Botanical Garden 93:465–516.

Fulton, M., and S. A. Hodges. 1999. Floral isolation between Aquilegia formosa and Aquilegia pubescens. Proceedings of the Royal Society B: Biological Sciences 266:2247–2252.

Funamoto, D., and S. Sugiura. 2016. Settling moths as potential pollinators of Uncaria rhynchophylla (Rubiaceae). European Journal of Entomology 113:497–501.

Gilbert, F. 1981. Foraging ecology of hoverflies: morphology of the mouthparts in relation to feeding on nectar and pollen in some common urban species. Ecological Entomology 6:245–262.

Gómez, J. M., J. Bosch, F. Perfectti, J. D. Fernández, M. Abdelaziz, and J. P. M. Camacho. 2008. Spatial variation in selection on corolla shape in a generalist plant is promoted by the preference patterns of its local pollinators. Proceedings of the Royal Society B: Biological Sciences 275:2241–2249.

Goyret, J., M. Pfaff, and R. A. Raguso. 2008. Why do Manduca sexta feed from white flowers ? Innate and learnt colour preferences in a hawkmoth. 95:569–576.

Group for the study on ecology of natural forest. 1972. Vegetation of the natural forest of Kyoto University forest in Ashiu. Bulletin of the Kyoto University Forests 43:33–52.

Hahn, M., and C. A. Brühl. 2016. The secret pollinators : an overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interactions 10:21–28.

Hargreaves, A. L., L. D. Harder, and S. D. Johnson. 2009. Consumptive emasculation: the ecological and evolutionary consequences of pollen theft. Biological Reviews 84:259–276.

Haverkamp, A., J. Bing, E. Badeke, B. S. Hansson, and M. Knaden (2016). Innate olfactory preferences for flowers matching proboscis length ensure optimal energy gain in a hawkmoth. Nature Communications 7: 11644.

Haverkamp, A., X. Li, B. S. Hansson, I. T. Baldwin, M. Knaden, and F. Yon. 2019. Flower movement balances pollinator needs and pollen protection. Ecology 100:e02553.

Heinrich, B., and T. M. Casey (1973). Metabolic rate and endothermy in sphinx moths. Journal of Comparative Physiology 82:195–206.

Heinrich, B. 1987. Thermoregulation by winter-flying endothermic moths. Journal of Experimental Biology 127:313–332.

Hernández-Hernández, T., and J. J. Wiens. 2020. Why are there so many flowering plants? A multiscale analysis of plant diversification. American Naturalist 195:948–963.

Herrera, C. M. 1995. Floral biology, microclimate, and pollination by ectothermic bees in an early-blooming herb. Ecology 76:218–228.

Hingston, A. B., and P. B. McQuillan. 2000. Are pollination syndromes useful predictors of floral visitors in Tasmania? Austral Ecology 25:600–609.

Huang, Z.-H., Y.-P. Song, and S.-Q. Huang. 2017. Evidence for passerine bird pollination in Rhododendron species. AoB PLANTS 9:plx062.

市毛,勝義. 2009. 日本産コシボソハナアブ類について. はなあぶ 28:9–22.

池ノ上利幸. 1990. 早春のヤガ類の吸蜜活動に関する一観察例. 誘蛾灯121:129–131.

池ノ上利幸. 2008. 花を訪れる蛾たち―知られざる姿を求めて. 昆虫文献六本脚,東京.

池ノ上利幸・金井弘夫. 2010. 夜間における蛾の訪花活動. 植物研究雑誌85:246–260.

Inoue, K. 1983. Systematics of the genus Platanthera in Japan and the adjacent regions with special reference to pollination. Journal of the Faculty of Science, University of Tokyo: Section III: Botany 13:285–374.

Ishii, H. S., M. X. Kubota, S. G. Tsujimoto, and G. Kudo. 2019. Association between community assemblage of flower colours and pollinator fauna: a comparison between Japanese and New Zealand alpine plant communities. Annals of Botany 123:533–541.

Johnsen, S., A. Kelber, E. Warrant, A. M. Sweeney, E. A. Widder, R. L. Lee, and J. Hernández-Andrés. 2006. Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor. Journal of Experimental Biology 209:789–800.

Johnson, S. D. 1995. Moth pollination of the cryptic Cape orchid Monadenia ophrydea. Flora 190:105–108.

Johnson, S. D., and B. Anderson. 2010. Coevolution between food-rewarding flowers and their pollinators. Evolution: Education and Outreach 3:32–39.

Johnson, S. D., and W. J. Bond. 1994. Red flowers and butterfly pollination in the fynbos of South Africa. Pages 137–148 in M. Arianoutsou and R. H. Groves, editors. Plant–animal interactions in Mediterranean-type ecosystems. Kluwer Academic Publishers, Dordrecht.

Johnson, S. D., and T. J. Edwards. 2000. The structure and function of orchid pollinaria. Plant Systematics and Evolution 222:243–269.

Johnson, S. D., A. Ellis, P. Carrick, A. Swift, N. Horner, S. J. van Rensburg, and W. J. Bond. 1993. Moth pollination and rhythms of advertisement and reward in Crassula fascicularis (Crassulaceae). South African Journal of Botany 59:511–513.

Johnson, S. D., M. Moré, F. W. Amorim, W. A. Haber, G. W. Frankie, D. A. Stanley, A. A. Cocucci, R. A. Raguso, A. A. Coccuci, and R. A. Raguso. 2017. The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Functional Ecology 31:101–115.

Johnson, S. D., and R. A. Raguso. 2016. The long-tongued hawkmoth pollinator niche for native and invasive plants in Africa. Annals of Botany 117:25–36.

Jürgens, A., U. Glück, G. Aas, and S. Dötterl. 2014. Diel fragrance pattern correlates with olfactory preferences of diurnal and nocturnal flower visitors in Salix caprea (Salicaceae). Botanical Journal of the Linnean Society 175:624–640.

Kaiser-Bunbury, C. N., A. Traveset, and D. M. Hansen. 2010. Conservation and restoration of plant-animal mutualisms on oceanic islands. Perspectives in Plant Ecology, Evolution and Systematics 12:131–143.

Kawahara, A. Y., D. Plotkin, C. A. Hamilton, H. Gough, R. St Laurent, H. L. Owens, N. T. Homziak, and J. R. Barber. 2018. Diel behavior in moths and butterflies: a synthesis of data illuminates the evolution of temporal activity. Organisms Diversity & Evolution 18:13–27.

岸田泰則・中島秀雄・大和田守・佐藤力夫・矢崎克己・矢野高広・金子岳夫・広渡俊哉. 2011a. 日本産ガ類標準図鑑I. 岸田泰則編. 学研教育出版, 東京.

岸田泰則・小林秀紀・佐々木明夫・大和田守・吉松慎一・神保宇嗣・石塚勝己・清野昭夫・柳田慶浩・枝恵太朗・四方圭一郎. 2011b. 日本産蛾類標準図鑑II.岸田泰則編. 学研教育出版, 東京.

Kehrberger, S., and A. Holzschuh. 2019. Warmer temperatures advance flowering in a spring plant more strongly than emergence of two solitary spring bee species. PLoS ONE 14:1–15.

Kelber, A. 2005. Alternative use of chromatic and achromatic cues in a hawkmoth. Proceedings of the Royal Society B: Biological Sciences 272:2143–2147.

Kendall, D. M., and P. G. Kevan. 1981. Nocturnal flight activity of moths (Lepidoptera) in alpine tundra. The Canadian Entomologist 113:607–614.

Kenta, T., N. Inari, T. Nagamitsu, K. Goka, and T. Hiura. 2007. Commercialized European bumblebee can cause pollination disturbance: an experiment on seven native plant species in Japan. Biological Conservation 134:298–309.

Kevan, P. G., and D. M. Kendall. 1997. Liquid assets for fat bankers: summer nectarivory by migratory moths in the Rocky Mountains, Colorado, U.S.A. Arctic and Alpine Research 29:478–482.

Kiepiel, I., and S. D. Johnson. 2014. Shift from bird to butterfly pollination in Clivia (Amaryllidaceae). American Journal of Botany 101:190–200.

King, C., G. Ballantyne, and P. G. Willmer. 2013. Why flower visitation is a poor proxy for pollination: measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods in Ecology and Evolution 4:811–818.

Knop, E., L. Zoller, R. Ryser, C. Gerpe, M. Hörler, and C. Fontaine. 2017. Artificial light at night as a new threat to pollination. Nature 548:206–209.

Koch, L., K. Lunau, and P. Wester. 2017. To be on the safe site – ungroomed spots on the bee’s body and their importance for pollination. PLoS ONE 12:e0182522.

Krenn, H. W. 2010. Feeding mechanisms of adult Lepidoptera: structure, function, and evolution of the mouthparts. Annual Review of Entomology 55:307–327.

Kudo, G., and E. J. Cooper. 2019. When spring ephemerals fail to meet pollinators : mechanism of phenological mismatch and its impact on plant reproduction. Proceedings of the Royal Society B: Biological Sciences 186:20190573.

Leal, R. L. B., M. M. Moreira, A. R. Pinto, J. De Oliveira Ferreira, M. Rodriguez-Girones, and L. Freitas. 2020. Temporal changes in the most effective pollinator of a bromeliad pollinated by bees and hummingbirds. PeerJ 8:e8836.

Lehnert, M. S., C. E. Beard, P. D. Gerard, K. G. Kornev, and P. H. Adler. 2016. Structure of the lepidopteran proboscis in relation to feeding guild. Journal of Morphology 277:167–182.

Lenth, R. V. 2016. Least-squares means: the R package lsmeans. Journal of Statistical Software, 69, 1–33. 69:1–33.

Levin, D. A., and D. E. Berube. 1972. Phlox and Colias: the efficiency of a pollination system. Evolution 26:242–250.

Liu, C. Q., Y. D. Gao, Y. Niu, Y. Z. Xiong, and H. Sun. 2019. Floral adaptations of two lilies: implications for the evolution and pollination ecology of huge trumpet-shaped flowers. American Journal of Botany 106:622–632.

Liu, C. Q., and S. Q. Huang. 2013. Floral divergence, pollinator partitioning and the spatiotemporal pattern of plant-pollinator interactions in three sympatric Adenophora species. Oecologia 173:1411–1423.

Macgregor, C. J., D. M. Evans, R. Fox, and M. J. O. Pocock. 2017. The dark side of street lighting: impacts on moths and evidence for the disruption of nocturnal pollen transport. Global Change Biology 23:697–707.

Macgregor, C. J., J. J. N. Kitson, R. Fox, C. Hahn, D. H. Lunt, M. J. O. Pocock, and D. M. Evans. 2019a. Construction, validation, and application of nocturnal pollen transport networks in an agro-ecosystem: a comparison using light microscopy and DNA metabarcoding. Ecological Entomology 44:17–29.

Macgregor, C. J., M. J. O. Pocock, R. Fox, and D. M. Evans. 2015. Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. Ecological Entomology 40:187–198.

Macgregor, C. J., M. J. O. Pocock, R. Fox, and D. M. Evans. 2019b. Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant. Ecosphere 10:e02550.

Macgregor, C. J., and A. S. Scott-Brown. 2020. Nocturnal pollination: an overlooked ecosystem service vulnerable to environmental change. Emerging Topics in Life Sciences 4:19–32.

Manning, J. C., P. Goldblatt, E. Parker, and R. Kaiser. 2012. First record of pollination in the Afro Eurasian Dipcadi Medik. (Hyacinthaceae): pollination of D. brevifoliumi by the owlet moth Syngrapha circumflexa (Noctuidae). South African Journal of Botany 81:15–18.

Miller, T. J., R. A. Raguso, and K. M. Kay. 2014. Novel adaptation to hawkmoth pollinators in Clarkia reduces efficiency, not attraction of diurnal visitors. Annals of Botany 113:317–329.

Miller, W. E. 1997. Diversity and evolution of tongue length in hawkmoths (Sphingidae). Journal of the Lepidopterists’ Society 51:9–31.

Minnaar, C., B. Anderson, M. L. De Jager, and J. D. Karron. 2019. Plant-pollinator interactions along the pathway to paternity. Annals of Botany 123:225–245.

Miyake, T., and T. Yahara. 1998. Why does the flower of Lonicera japonica open at dusk? Canadian Journal of Botany 76:1806–1811.

Miyake, T., and T. Yahara. 1999. Theoretical evaluation of pollen transfer by nocturanal and diurnal pollinators: when should a flower open? Oikos 86:233–240.

Mizunaga, Y., and G. Kudo. 2017. A linkage between flowering phenology and fruit-set success of alpine plant communities with reference to the seasonality and pollination effectiveness of bees and flies. Oecologia 185:453–464.

Motten, A. F. 1986. Pollination ecology of the spring wildflower community of a temperate deciduous forest. Ecological Monographs 56:21–42.

Nikkeshi, A., D. Kurimoto, and A. Ushimaru. 2015. Low flower-size variation in bilaterally symmetrical flowers: support for the pollination precision hypothesis. American Journal of Botany 102:2032–2040.

大石久志. 1996. ルーペで調べる身近な縞模様のハナアブの見分け方 (1). 昆虫と自然 31:42–47.

Okamoto, T., A. Kawakita, and M. Kato. 2008. Floral adaptations to nocturnal moth pollination in Diplomorpha (Thymelaeaceae). Plant Species Biology 23:192–201.

Okazaki, J. 1993. Adenophora Fisch. Pages 406–410 in K. Iwatsuki, T. Yamazaki, D. E. Boufford, and H. Ohba, editors. Flora of Japan, vol. IIIa, Angiospermae Dictyedoneae Sympetalae (a). Kodansha, Tokyo.

Oliveira, P. E., P. E. Gibbs, and A. A. Barbosa. 2004. Moth pollination of woody species in the Cerrados of Central Brazil : a case of so much owed to so few ? Plant Systematics and Evolution 245:41–54.

Ollerton, J. 2017. Pollinator diversity: distribution, ecological function, and conservation. Annual Review of Ecology, Evolution, and Systematics 48:353–376.

Ollerton, J., R. Alarco, N. M. Waser, M. V Price, S. Watts, L. Cranmer, A. Hingston, C. I. Peter, and J. Rotenberry. 2009. A global test of the pollination syndrome hypothesis. Annals of Botany 103:1471–1480.

Ollerton, J., R. Winfree, and S. Tarrant. 2011. How many flowering plants are pollinated by animals? Oikos 120:321–326.

Osada, N., S. Sugiura, K. Kawamura, M. Cho, and H. Takeda. 2003. Community-level flowering phenology and fruit set: comparative study of 25 woody species in a secondary forest in Japan. Ecological Research 18:711–723.

Pauw, A. 2006. Floral syndromes accurately predict pollination by a specialized oil-collecting bee (Rediviva peringueyi, Melittidae) in a guild of South African orchids (Coryciinae). American Journal of Botany 93:917–926.

Pauw, A. 2019. A bird’s-eye view of pollination : biotic interactions as drivers of adaptation and community change. Annual Review of Ecology, Evolution, and Systematics 50:477–502.

Pauw, A., A. A. Cocucci, and A. N. Sérsic. 2020. The least effective pollinator principle: specialized morphology despite generalized ecology. Plant Biology 22:924–931.

Peng, D.-L., Z.-Q. Zhang, B. Xu, Z.-M. Li, and H. Sun. 2012. Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alpine Botany 122:65–73.

Pérez-Barrales, R., P. Vargas, and J. Arroyo. 2006. New evidence for the Darwinian hypothesis of heterostyly: Breeding systems and pollinators in Narcissus sect. Apodanthi. New Phytologist 171:553–567.

Peter, C. I., and N. Venter. 2017. Generalist, settling moth pollination in the endemic South African twig epiphyte, Mystacidium pusillum Harv. (Orchidaceae). Flora: Morphology, Distribution, Functional Ecology of Plants 232:16–21.

Proctor, M., P. Yeo, and A. Lack. 1996. The Natural History of Pollination. Timber Press, Portland.

R Core Team. 2016. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

R Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

R Core Team. 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Rader, R., S. A. Cunningham, B. G. Howlett, and D. W. Inouye. 2020. Non-bee insects as visitors and pollinators of crops: biology, ecology, and management. Annual Review of Entomology 65: 391–407.

Roquet, C., L. Sáez, J. J. Aldasoro, A. Susanna, M. L. Alarcón, and N. Garcia-jacas. 2008. Natural delineation, molecular phylogeny and floral evolution in Campanula. Systematic Botany 33:203–217.

Rosas-Guerrero, V., R. Aguilar, S. Martén-Rodríguez, L. Ashworth, M. Lopezaraiza-Mikel, J. M. Bastida, and M. Quesada. 2014. A quantitative review of pollination syndromes: do floral traits predict effective pollinators ? Ecology Letters 17:388–400.

Satoh, A., M. Kinoshita, and K. Arikawa. 2016. Innate preference and learning of colour in the male cotton bollworm Helicoverpa armigera. Journal of Experimental Biology 219:3857–3860.

Stebbins, G. L. 1970. Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Annual Review of Ecology and Systematics 1:307–326.

多田内修・村尾竜起・宮永龍一・ 幾留秀一・長瀬博彦・三田井克志・塩川信・伊藤誠夫. 2014. 日本産ハナバチ図鑑. 多田内修・村尾竜起編. 文一総合出版,東京.

高橋秀男. 2000. キブシ科. 高橋秀男・勝山輝男監修.樹に咲く花・離弁花1.山と渓谷社,東京.

竹内正人. 2009. 写真集 ハナアブ300 双翅目談話会研究資料 (3). 双翅目談話会.田中肇. 1997. 花と昆虫がつくる自然. 保育社, 大阪.

Thomson, J. D., and P. Wilson. 2008. Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. International Journal of Plant Sciences 169:23–38.

Tiusanen, M., P. D. N. Hebert, N. M. Schmidt, and T. Roslin. 2016. One fly to rule them all—muscid flies are the key pollinators in the arctic. Proceedings of the Royal Society B: Biological Sciences 283:20161271.

Tong, Z. Y., and S. Q. Huang. 2018. Safe sites of pollen placement: a conflict of interest between plants and bees? Oecologia 186:163–171.

Totland, Ø. 1994. Influence of climate, time of day and season, and flower density on insect flower visitation in alpine Norway. Arctic and Alpine Research 26:66–71.

Ushimaru, A., and F. Hyodo. 2005. Why do bilaterally symmetrical flowers orient vertically? Flower orientation influences pollinator landing behaviour. Evolutionary Ecology Research 7:151–160.

Van der Niet, T. 2021. Paucity of natural history data impedes phylogenetic analyses of pollinator-driven evolution. New Phytologist 229: 1201–1205.

Van der Niet, T., and S. D. Johnson. 2012. Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends in Ecology and Evolution 27:353–361.

Van der Niet, T., M. D. Pirie, A. Shuttleworth, S. D. Johnson, and J. J. Midgley. 2014. Do pollinator distributions underlie the evolution of pollination ecotypes in the Cape shrub Erica plukenetii? Annals of Botany 113:301–315.

VanZandt, P. A., D. D. Johnson, C. Hartley, K. A. LeCroy, H. W. Shew, B. T. Davis, and M. S. Lehnert. 2019. Which moths might be pollinators? Approaches in the search for the flower-visiting needles in the Lepidopteran haystack. Ecological Entomology:13–25.

Walton, R. E., C. D. Sayer, H. Bennion, and J. C. Axmacher. 2020. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biology Letters 16:20190877.

Wang, H., C.-L. Xiao, R. W. Gituru, Z. Xiong, D. Yu, Y.-H. Guo, and C.-F. Yang. 2014. Change of floral orientation affects pollinator diversity and their relative importance in an alpine plant with generalized pollination system, Geranium refractum (Geraniaceae). Plant Ecology 215:1211–1219.

Wardhaugh, C. W. 2015. How many species of arthropods visit flowers ? Arthropod-Plant Interactions 9:547–565.

Warrant, E., and M. Dacke. 2011. Vision and visual navigation in nocturnal insects. Annual Review of Entomology 56:239–254.

Waser, N. M., L. Chittka, M. V Price, N. M. Williams, and J. Ollerton. 1996. Generalization in pollination systems, and why it matters. Ecology 77:1043–1060.

Weissmann, J., and H. Schaefer. 2018. The importance of generalist pollinator complexes for endangered island endemic plants. Arquipélago - Life and Marine Sciences 35:23–40.

Willmer, P. 2011. Pollination and Floral Ecology. Princeton University Press, Princeton.

Yeo, P. F. 1993. Secondary pollen presentation: form, function and evolution. Plant Systematics and Evolution, Supplementa 6. Springer-Verlag Wien, New York.

Yu, Y. ‐M., X. ‐X. Li, D. Xie, and H. Wang. 2021. Horizontal orientation of zygomorphic flowers: significance for rain protection and pollen transfer. Plant Biology 23: 156–161.

Yumoto, T. 1986. The ecological pollination syndromes of insect-pollinated plants in an alpine meadow. Ecological Research 1:83–95.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る