リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cellular characterization of hiPS CMs cultured on PMEA analogous polymers with different bound water content」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cellular characterization of hiPS CMs cultured on PMEA analogous polymers with different bound water content

KURITA, Hiroko 栗田, 寛子 クリタ, ヒロコ KOBAYASHI, Shingo 小林, 慎吾 コバヤシ, シンゴ ANADA, Takahisa 穴田, 貴久 アナダ, タカヒサ TANAKA, Masaru 田中, 賢 タナカ, マサル TODO, Mitsugu 東藤, 貢 トウドウ, ミツグ 九州大学 DOI:https://doi.org/10.15017/6786935

2023.09

概要

In recent years, human iPS cell-derived cardiomyocytes (hiPS-CMs) have attracted much attention in the arena of regenerative therapies. However, hiPS-CMs are known to be immature and have lower contra

この論文で使われている画像

参考文献

1)

Percentage of

displacement

behavior (5 μm~)

(%)

Mean

displacement

with pulsation

(μm)

0.05

0.08

0.21

0.98

0.395

0.287

0.393

0.488

PET

PMEMA

PEEA

PMEA

4.

Conclusions

In this study, hiPS-CMs were cultured on

PMEA analogues and the effect on hiPS-CMs

was investigated. Substrates were prepared by

coating biocompatible materials, PMEA

analogues, on PET. The morphology of

hiPS-CMs

single

cells

was

spherical

morphology and the adhesion area was smaller,

as the high content of binding water in the

scaffold.

The

self-pulsating

hiPS-CMs

aggregates on the fifth day of culture were

then evaluated. The results showed that the

area of self-pulsating cell aggregates tended to

be smaller on substrates with higher amounts

of bound water. Furthermore, the magnitude

of displacement associated with their

self-pulsating

was

larger.

Especially,

hiPS-CMs cultured on PMEA showed

significantly larger contraction behavior than

others. This result suggests that the bound

water content of scaffolds affects cell adhesion

and

weakens

cell-scaffold

interaction,

resulting in stronger intercellular binding of

cell aggregates and better self-contraction. In

previous studies, cell alignment of hiPS-CMs

with nanofiber scaffolds has been successful in

expressing many genes related to intercellular

junctions.23) There was also an example of a

study that succeeded in improving pulsation

force by geometrically aggregating the

hiPS-CMs by using Faraday waves.22) This

study demonstrated that hiPS-CMs exhibit

different cell aggregation behaviors and

different

cellular

characteristics

when

cultured on PMEA analogues with different

amounts of bound water. In the future, it is

expected to establish a scaffold material that

can improve the pulsatility of hiPS-CMs by

controlling the amount of bound water on the

scaffold surface.

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

M. Tanaka, T. Motomura, M. Kawada, T. Anzai, Y.

Kasori, T. Shiroya, K. Shimura, M. Onishi, A.

Mochizuki, Biomaterials, 21, (2000), p. 1471-1481.

A. K. Zimmermann, H. Aebert, A. Reiz, M. Freitag,

M. Husseini, G. Ziemer, H. P. Wendel, ASAIO j., 50,

(2004), p. 193-199.

K. Sato, S. Kobayashi, M. Kusakari, S. Watahiki, M.

Oikawa, T. Hoshiba, M. Tanaka, Macromol. Biosci.,

15, (2015), p. 1296-1303.

T. Hoshiba, T. Otaki, E. Nemoto, H. Maruyama, M.

Tanaka, ACS Appl. Mater. Interfaces, 7, (2015), p.

18096-18103.

M. A. Haque, D. Murakami, T. Anada, M. Tanaka,

Coatings, 12, (2022), p. 1-16.

K. Nishida, T. Anada, S. Kobayashi, T. Ueda, M.

Tanaka, Acta Biomater., 134, (2021), p. 313-324.

G. Kensah, A. R. Lara, J. Dahlmann, R. Zweigerdt, K.

Schwanke, J. Hegermann, D. Skvorc, A. Gawol, A.

Azizian, S. Wagner, L. S. Maier, A. Krause, G. Dräger,

M. Ochs, A. Haverich, I. Gruh, U. Martin, Eur. Heart

J., 34, (2013), p. 1134-1146.

E. R. Robbins, G. D. Pins, M. A. Laflamme, G. R.

Gaudette, J. Biomed. Mater. Res. A, 108, (2020), p.

2123-2132.

S. S. Majidi, P. S. Adamsen, M. Hanif, Z. Zhang, Z.

Wang, M. Chen, Int. J. Biol. Macromol., 118, (2018), p.

1648-1654.

Y. Efraim, B. Schoen, S. Zahran, T. Davidov, G. Vasilyev, L.

Baruch, E. Zussman, M. Machluf, Sci. Rep., 9, (2019).

M. Tanaka, A. Mochizuki, J. Biomed. Mater. Res. A,

68A, (2004), p. 684-695.

J. Schindelin, C. T. Rueden, M. C. Hiner, K. W.

Eliceiri, Mol. Reprod. Dev., 82, (2015), p. 518-529.

N. Soro, H. Attar, E. Brodie, M. Veidt, A. Molotnikov,

M. S. Dargusch, J. Mech. Behav. Biomed. Mater., 97,

(2019), p. 149-158.

T. Hayakawa, T. Kunihiro, T. Ando, S. Kobayashi, E.

Matsui, H. Yada, Y. Kanda, J. Kurokawa, T.

Furukawa, J. Mol. Cell., 77, (2014), p. 178-191.

E. Goto, F. Tokunaga, Biochem. Biophys. Res.

Commun., 485, (2017), p. 152-159.

C. Sato, M. Aoki, M. Tanaka, Colloids Surf. B, 145,

(2016), p 586-596.

T. Hoshiba, E. Nemoto, K. Sato, T. Orui, T. Otaki, A.

Yoshihiro, M. Tanaka, PLOS ONE, 10, (2015),

e0136066.

M. Y. Tsai, F. Aratsu, S. Sekida, S. Kobayashi, M.

Tanaka, ACS Appl. Bio Mater., 3, (2020), p.

1858-1864.

K. Nishida, S. Sekida, T. Anada, M. Tanaka, ACS

Biomater. Sci. Eng., 8, (2022), p. 672-681.

R. K. Iyer, L. L. Y. Chiu, M. Radisic, J. Biomed.

Mater. Res., 89A, (2009), p. 616-631.

N. J. Daily, Y. Yin, P. Kemanli, B. Ip, T. Wakatsuki, J.

Bioeng Biomed Sci., 5, (2015), p. 1-10.

V. Serpooshan, P. Chen, H. Wu, S. Lee, A. Sharma, A.

D. Hu, S. Venkatraman, V. A. Ganesan, O. B. Usta,

M. Yarmush, F. Yang, C. J. Wu, U. Demirci, M. S. Wu,

Biomaterials, 131, (2017), p. 45-57.

M. Khan, Y. Xu, S. Hua, J. Johnson, A. Belevych, P.

M. L. Janssen, S. Gyorke, J. Guan, M. G. Angelos,

PLOS ONE, 10, (2015), p. 1-19.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る