リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Specific induction and long-term maintenance of high purity ventricular cardiomyocytes from human induced pluripotent stem cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Specific induction and long-term maintenance of high purity ventricular cardiomyocytes from human induced pluripotent stem cells

Fukushima, Hiroyuki 京都大学 DOI:10.14989/doctor.r13443

2021.09.24

概要

【背景・目的】ヒト iPS 細胞からの心筋細胞は、心臓毒性スクリーニング、創薬、疾患モデリングなど、さまざまな分野への応用が期待されており、高純度のヒト iPS 細胞由来心筋細胞の安定した作製は、ますます需要が高まっている。しかしながら、現在のヒト iPS 細胞からの心筋細胞の分化誘導方法では、心筋細胞と非心筋細胞が混在しながら作製されるため、作製の最終段階に非心筋細胞を除く精製過程が必要となっている。また一旦精製しても次第に純度が低下する。作製された心筋細胞においては、生体の心室筋細胞様、心房筋細胞様、ペースメーカー細胞様など、様々な性質を有する細胞が混ざり合って構成されている。
本研究では、従来の心筋分化誘導方法を手掛かりに、非心筋細胞を除く精製過程なしに高純度の心室筋細胞を作製する方法を開発することを試みた。

【方法・結果】まず、これまでの心血管系の分化誘導方法の知見をもとに、ヒト iPS 細胞を無血清二次元培養下において、成長因子であるActivin A, BMP4, bFGF を用いて、心筋細胞への分化能を有する中胚葉細胞集団(血小板由来成長因子受容体-α(PDGFRα)陽性細胞)を誘導および収集した。収集したPDGFRα 陽性細胞は、2 種類のWnt シグナル阻害剤 (XAV 及びIWP4)を用いて強力に心筋細胞へ誘導することにより、約95%の細胞が心筋細胞特異的マーカーであるCardiac troponin T 陽性の細胞に分化した(無処理; 7.1 ± 3.1%, XAV 単独; 74.5 ± 6.5%, IWP4 単独; 72.2 ± 6.8%, XAV+IWP4 併用; 94.1 ± 2.0%)。この心筋分化能を有する前駆段階の細胞の収集と強力な心筋への分化誘導刺激によって、非心筋細胞を除去する過程なしに高純度の心筋細胞が安定して得られた。さらに 200 日を超える長期間においても高純度を維持し培養し続けることが可能であった。
さらに、作製した心筋細胞の性質を詳細に解析した。得られた心筋細胞は、ほぼ全ての細胞において、心室筋の特異的マーカーであるミオシン軽鎖2v を発現し、長期間の培養によって、その発現はより顕著になることを認めた。また、長期培養した心筋細胞は、横紋(サルコメア)構造の成熟化(Z 帯、M 帯などの形成、サルコメア長の延長(培養初期: 1.37 ± 0.10 μm, 200 日以上培養: 1.91 ± 0.15 μm))、ミトコンドリアの増加・成熟化、さらには成体の成熟化した心筋細胞の構造であるT 管様構造を認めた。
電気生理学的解析においても、得られた心筋細胞の90%以上は、心室筋様の活動電位(AP)波形を示した。また長期間の培養によって、心室筋細胞の成熟の特徴である最大拡張期電位の低下、電位ピーク値、AP 増幅量、及び AP 上昇の最高速度 (dV/dtmax)の増加を示した。さらに成熟した心室筋細胞が有する IKs 電流を阻害し QT 延長を示すクロマノールに対しても、生体の心室筋と同様の反応を示した。

【結語】ヒト iPS 細胞から非心筋細胞の除去過程なしに高純度の心室筋細胞を安定して作製する方法を開発した。本方法では、高純度状態で 200 日以上の長期間維持培養が可能であり、長期間の培養により形態学的および電気生理学的成熟が確認できた。この作製技術は、心臓毒性試験、疾患モデリングなどの新たな研究用ツールとしての応用が期待される。

この論文で使われている画像

参考文献

1. Yamamoto W, Asakura K, Ando H, Taniguchi T, Ojima A, Uda T, et al. Electrophysiological Characteris- tics of Human iPSC-Derived Cardiomyocytes for the Assessment of Drug-Induced Proarrhythmic Potential. PLoS One. 2016; 11(12):e0167348. https://doi.org/10.1371/journal.pone.0167348 PMID: 27923051

2. Kanda Y, Yamazaki D, Osada T, Yoshinaga T, Sawada K. Development of torsadogenic risk assess- ment using human induced pluripotent stem cell-derived cardiomyocytes: Japan iPS Cardiac Safety Assessment (JiCSA) update. J Pharmacol Sci. 2018; 138(4):233–9. Epub 2018/11/13. https://doi.org/ 10.1016/j.jphs.2018.10.010 PMID: 30415824.

3. Oikonomopoulos A, Kitani T, Wu JC. Pluripotent Stem Cell-Derived Cardiomyocytes as a Platform for Cell Therapy Applications: Progress and Hurdles for Clinical Translation. Mol Ther. 2018; 26(7):1624–

34. Epub 2018/04/28. https://doi.org/10.1016/j.ymthe.2018.02.026 PMID: 29699941; PubMed Central PMCID: PMC6035734.

4. Xu C, Police S, Rao N, Carpenter MK. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res. 2002; 91(6):501–8. https://doi.org/10.1161/01.res.0000035254. 80718.91 PMID: 12242268.

5. Laflamme MA, Chen KY, Naumova AV, Muskheli V, Fugate JA, Dupras SK, et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol. 2007; 25(9):1015–24. https://doi.org/10.1038/nbt1327 PMID: 17721512.

6. Anderson D, Self T, Mellor IR, Goh G, Hill SJ, Denning C. Transgenic enrichment of cardiomyocytes from human embryonic stem cells. Mol Ther. 2007; 15(11):2027–36. https://doi.org/10.1038/sj.mt. 6300303 PMID: 17895862.

7. Bizy A, Guerrero-Serna G, Hu B, Ponce-Balbuena D, Willis BC, Zarzoso M, et al. Myosin light chain 2- based selection of human iPSC-derived early ventricular cardiac myocytes. Stem Cell Res. 2013; 11 (3):1335–47. https://doi.org/10.1016/j.scr.2013.09.003 PMID: 24095945; PubMed Central PMCID: PMC4148042.

8. Elliott DA, Braam SR, Koutsis K, Ng ES, Jenny R, Lagerqvist EL, et al. NKX2-5(eGFP/w) hESCs for iso- lation of human cardiac progenitors and cardiomyocytes. Nat Methods. 2011; 8(12):1037–40. https:// doi.org/10.1038/nmeth.1740 PMID: 22020065.

9. Hattori F, Chen H, Yamashita H, Tohyama S, Satoh YS, Yuasa S, et al. Nongenetic method for purifying stem cell-derived cardiomyocytes. Nat Methods. 2010; 7(1):61–6. https://doi.org/10.1038/nmeth.1403 PMID: 19946277.

10. Miki K, Endo K, Takahashi S, Funakoshi S, Takei I, Katayama S, et al. Efficient Detection and Purifica- tion of Cell Populations Using Synthetic MicroRNA Switches. Cell Stem Cell. 2015; 16(6):699–711. Epub 2015/05/26. https://doi.org/10.1016/j.stem.2015.04.005 PMID: 26004781.

11. Dubois NC, Craft AM, Sharma P, Elliott DA, Stanley EG, Elefanty AG, et al. SIRPA is a specific cell-sur- face marker for isolating cardiomyocytes derived from human pluripotent stem cells. Nat Biotechnol. 2011; 29(11):1011–8. https://doi.org/10.1038/nbt.2005 PMID: 22020386; PubMed Central PMCID: PMC4949030.

12. Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, et al. Efficient and scal- able purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS One. 2011; 6(8):e23657. https://doi.org/10.1371/journal.pone. 0023657 PMID: 21876760; PubMed Central PMCID: PMC3158088.

13. Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013; 12(1):127–37. https://doi.org/10.1016/j.stem.2012.09.013 PMID: 23168164.

14. Burridge PW, Matsa E, Shukla P, Lin ZC, Churko JM, Ebert AD, et al. Chemically defined generation of human cardiomyocytes. Nat Methods. 2014; 11(8):855–60. https://doi.org/10.1038/nmeth.2999 PMID: 24930130; PubMed Central PMCID: PMC4169698.

15. Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, et al. Human iPS cell-engi- neered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep. 2014; 4:6716. https://doi.org/10.1038/srep06716 PMID: 25336194; PubMed Central PMCID: PMC4205838.

16. Takeda M, Kanki Y, Masumoto H, Funakoshi S, Hatani T, Fukushima H, et al. Identification of Cardio- myocyte-Fated Progenitors from Human-Induced Pluripotent Stem Cells Marked with CD82. Cell Rep. 2018; 22(2):546–56. https://doi.org/10.1016/j.celrep.2017.12.057 PMID: 29320747.

17. Kawatou M, Masumoto H, Fukushima H, Morinaga G, Sakata R, Ashihara T, et al. Modelling Torsade de Pointes arrhythmias in vitro in 3D human iPS cell-engineered heart tissue. Nature Communications. 2017; 8(1):1078. https://doi.org/10.1038/s41467-017-01125-y PMID: 29057872

18. Ikuno T, Masumoto H, Yamamizu K, Yoshioka M, Minakata K, Ikeda T, et al. Efficient and robust differ- entiation of endothelial cells from human induced pluripotent stem cells via lineage control with VEGF and cyclic AMP. PLoS One. 2017; 12(3):e0173271. https://doi.org/10.1371/journal.pone.0173271 PMID: 28288160; PubMed Central PMCID: PMC5347991.

19. Takakura N, Yoshida H, Ogura Y, Kataoka H, Nishikawa S, Nishikawa S. PDGFR alpha expression dur- ing mouse embryogenesis: immunolocalization analyzed by whole-mount immunohistostaining using the monoclonal anti-mouse PDGFR alpha antibody APA5. The journal of histochemistry and cytochem- istry: official journal of the Histochemistry Society. 1997; 45(6):883–93. Epub 1997/06/01. https://doi. org/10.1177/002215549704500613 PMID: 9199674.

20. Schatteman GC, Motley ST, Effmann EL, Bowen-Pope DF. Platelet-derived growth factor receptor alpha subunit deleted Patch mouse exhibits severe cardiovascular dysmorphogenesis. Teratology. 1995; 51(6):351–66. Epub 1995/06/01. https://doi.org/10.1002/tera.1420510602 PMID: 7502236.

21. Hidaka K, Shirai M, Lee JK, Wakayama T, Kodama I, Schneider MD, et al. The cellular prion protein identifies bipotential cardiomyogenic progenitors. Circ Res. 2010; 106(1):111–9. Epub 2009/11/17. https://doi.org/10.1161/CIRCRESAHA.109.209478 PMID: 19910576.

22. Liu F, Kang I, Park C, Chang LW, Wang W, Lee D, et al. ER71 specifies Flk-1+ hemangiogenic meso- derm by inhibiting cardiac mesoderm and Wnt signaling. Blood. 2012; 119(14):3295–305. Epub 2012/ 02/22. https://doi.org/10.1182/blood-2012-01-403766 PMID: 22343916; PubMed Central PMCID: PMC3321855.

23. Ardehali R, Ali SR, Inlay MA, Abilez OJ, Chen MQ, Blauwkamp TA, et al. Prospective isolation of human embryonic stem cell-derived cardiovascular progenitors that integrate into human fetal heart tis- sue. Proceedings of the National Academy of Sciences of the United States of America. 2013; 110 (9):3405–10. Epub 2013/02/09. https://doi.org/10.1073/pnas.1220832110 PMID: 23391730; PubMed Central PMCID: PMC3587189.

24. Magli A, Schnettler E, Swanson SA, Borges L, Hoffman K, Stewart R, et al. Pax3 and Tbx5 specify whether PDGFRα+ cells assume skeletal or cardiac muscle fate in differentiating embryonic stem cells. Stem Cells. 2014; 32(8):2072–83. Epub 2014/03/29. https://doi.org/10.1002/stem.1713 PMID: 24677751; PubMed Central PMCID: PMC4107161.

25. Chan SS, Hagen HR, Swanson SA, Stewart R, Boll KA, Aho J, et al. Development of Bipotent Cardiac/ Skeletal Myogenic Progenitors from MESP1+ Mesoderm. Stem cell reports. 2016; 6(1):26–34. Epub 2016/01/16. https://doi.org/10.1016/j.stemcr.2015.12.003 PMID: 26771351; PubMed Central PMCID: PMC4719188.

26. Yoon C, Song H, Yin T, Bausch-Fluck D, Frei AP, Kattman S, et al. FZD4 Marks Lateral Plate Meso- derm and Signals with NORRIN to Increase Cardiomyocyte Induction from Pluripotent Stem Cell- Derived Cardiac Progenitors. Stem cell reports. 2018; 10(1):87–100. Epub 2017/12/19. https://doi.org/ 10.1016/j.stemcr.2017.11.008 PMID: 29249665; PubMed Central PMCID: PMC5768897.

27. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A, Okamoto S, et al. A more efficient method to gen- erate integration-free human iPS cells. Nat Methods. 2011; 8(5):409–12. https://doi.org/10.1038/nmeth. 1591 PMID: 21460823.

28. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al. Generation of induced plu- ripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008; 26(1):101–6. https://doi.org/10.1038/nbt1374 PMID: 18059259.

29. Okita K, Yamakawa T, Matsumura Y, Sato Y, Amano N, Watanabe A, et al. An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells. 2013; 31(3):458–66. https://doi.org/10.1002/stem.1293 PMID: 23193063.

30. Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic cur- rents. Am J Physiol Heart Circ Physiol. 2011; 301(5):H2006–17. https://doi.org/10.1152/ajpheart. 00694.2011 PMID: 21890694; PubMed Central PMCID: PMC4116414.

31. Kitaguchi T, Moriyama Y, Taniguchi T, Ojima A, Ando H, Uda T, et al. CSAHi study: Evaluation of multi- electrode array in combination with human iPS cell-derived cardiomyocytes to predict drug-induced QT prolongation and arrhythmia—effects of 7 reference compounds at 10 facilities. Journal of pharmaco- logical and toxicological methods. 2016; 78:93–102. Epub 2015/12/15. https://doi.org/10.1016/j.vascn. 2015.12.002 PMID: 26657830.

32. Yamazaki K, Hihara T, Taniguchi T, Kohmura N, Yoshinaga T, Ito M, et al. A novel method of selecting human embryonic stem cell-derived cardiomyocyte clusters for assessment of potential to influence QT interval. Toxicology in vitro: an international journal published in association with BIBRA. 2012; 26 (2):335–42. Epub 2011/12/27. https://doi.org/10.1016/j.tiv.2011.12.005 PMID: 22198052.

33. Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, et al. Tankyrase inhibition stabi- lizes axin and antagonizes Wnt signalling. Nature. 2009; 461(7264):614–20. https://doi.org/10.1038/ nature08356 PMID: 19759537.

34. Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, et al. Small molecule-mediated disruption of Wnt- dependent signaling in tissue regeneration and cancer. Nat Chem Biol. 2009; 5(2):100–7. https://doi. org/10.1038/nchembio.137 PMID: 19125156; PubMed Central PMCID: PMC2628455.

35. Chuva de Sousa Lopes SM, Hassink RJ, Feijen A, van Rooijen MA, Doevendans PA, Tertoolen L, et al. Patterning the heart, a template for human cardiomyocyte development. Dev Dyn. 2006; 235(7):1994– 2002. https://doi.org/10.1002/dvdy.20830 PMID: 16649168.

36. Bird SD, Doevendans PA, van Rooijen MA, Brutel de la Riviere A, Hassink RJ, Passier R, et al. The human adult cardiomyocyte phenotype. Cardiovasc Res. 2003; 58(2):423–34. https://doi.org/10.1016/ s0008-6363(03)00253-0 PMID: 12757876.

37. Kamakura T MT, Sasaki K, Yoshida Y, Wuriyanghai Y, Chen J, Hattori T, et al. Ultrastructural Matura- tion of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes in a Long-Term Culture. Circula- tion Journal. 2013; 77:8. https://doi.org/10.1253/circj.CJ-12-0987.

38. Zhu WZ, Xie Y, Moyes KW, Gold JD, Askari B, Laflamme MA. Neuregulin/ErbB signaling regulates car- diac subtype specification in differentiating human embryonic stem cells. Circ Res. 2010; 107(6):776–86. https://doi.org/10.1161/CIRCRESAHA.110.223917 PMID: 20671236; PubMed Central PMCID: PMC2941561.

39. Verkerk AO, Wilders R, van Borren MM, Peters RJ, Broekhuis E, Lam K, et al. Pacemaker current (I(f)) in the human sinoatrial node. Eur Heart J. 2007; 28(20):2472–8. https://doi.org/10.1093/eurheartj/ ehm339 PMID: 17823213.

40. Robertson C, Tran DD, George SC. Concise review: maturation phases of human pluripotent stem cell- derived cardiomyocytes. Stem Cells. 2013; 31(5):829–37. https://doi.org/10.1002/stem.1331 PMID: 23355363; PubMed Central PMCID: PMC3749929.

41. Fu JD, Jiang P, Rushing S, Liu J, Chiamvimonvat N, Li RA. Na+/Ca2+ exchanger is a determinant of excitation-contraction coupling in human embryonic stem cell-derived ventricular cardiomyocytes. Stem Cells Dev. 2010; 19(6):773–82. https://doi.org/10.1089/scd.2009.0184 PMID: 19719399; PubMed Cen- tral PMCID: PMC3135244.

42. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe´-Heider F, Walsh S, et al. Evidence for Car- diomyocyte Renewal in Humans. Sience. 2009; 324(5923):98–102. https://doi.org/10.1126/science. 1164680 PMID: 19342590

43. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011; 473(7347):326–35. https://doi.org/10. 1038/nature10147 PMID: 21593865; PubMed Central PMCID: PMC4091722.

44. Funakoshi S, Miki K, Takaki T, Okubo C, Hatani T, Chonabayashi K, et al. Enhanced engraftment, pro- liferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes. Sci Rep. 2016; 6:19111. Epub 2016/01/09. https://doi.org/10.1038/srep19111 PMID: 26743035; PubMed Central PMCID: PMC4705488.

45. Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature. 2018; 556(7700):239–43. https://doi. org/10.1038/s41586-018-0016-3 PMID: 29618819; PubMed Central PMCID: PMC5895513.

46. Drouin E, Lande G, Charpentier F. Amiodarone reduces transmural heterogeneity of repolarization in the human heart. Journal of the American College of Cardiology. 1998; 32(4):1063–7. https://doi.org/ 10.1016/s0735-1097(98)00330-1 PMID: 9768733

47. Liu J, Laksman Z, Backx PH. The electrophysiological development of cardiomyocytes. Advanced drug delivery reviews. 2016; 96:253–73. Epub 2016/01/21. https://doi.org/10.1016/j.addr.2015.12.023 PMID: 26788696.

48. Pekkanen-Mattila M, Chapman H, Kerkela¨ E, Suuronen R, Skottman H, Koivisto AP, et al. Human embryonic stem cell-derived cardiomyocytes: demonstration of a portion of cardiac cells with fairly mature electrical phenotype. Experimental biology and medicine (Maywood, NJ). 2010; 235(4):522–30. Epub 2010/04/22. https://doi.org/10.1258/ebm.2010.009345 PMID: 20407085.

49. Giacomelli E, Meraviglia V, Campostrini G, Cochrane A, Cao X, van Helden RWJ, et al. Human-iPSC- Derived Cardiac Stromal Cells Enhance Maturation in 3D Cardiac Microtissues and Reveal Non-cardio- myocyte Contributions to Heart Disease. Cell Stem Cell. 2020; 26(6):862–79.e11. Epub 2020/05/28. https://doi.org/10.1016/j.stem.2020.05.004 PMID: 32459996; PubMed Central PMCID: PMC7284308.

50. Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM. Human Pluripotent Stem Cell-Derived Atrial and Ventricular Cardiomyocytes Develop from Distinct Mesoderm Populations. Cell Stem Cell. 2017; 21 (2):179–94 e4. https://doi.org/10.1016/j.stem.2017.07.003 PMID: 28777944.

51. Zhang Q, Jiang J, Han P, Yuan Q, Zhang J, Zhang X, et al. Direct differentiation of atrial and ventricular myocytes from human embryonic stem cells by alternating retinoid signals. Cell Res. 2011; 21(4):579–87. https://doi.org/10.1038/cr.2010.163 PMID: 21102549; PubMed Central PMCID: PMC3203651.

52. Devalla HD, Schwach V, Ford JW, Milnes JT, El-Haou S, Jackson C, et al. Atrial-like cardiomyocytes from human pluripotent stem cells are a robust preclinical model for assessing atrial-selective pharma- cology. EMBO Mol Med. 2015; 7(4):394–410. https://doi.org/10.15252/emmm.201404757 PMID: 25700171; PubMed Central PMCID: PMC4403042.

53. Xavier-Neto J, Shapiro MD, Houghton L, Rosenthal N. Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev Biol. 2000; 219(1):129–41. https://doi.org/10.1006/dbio.1999.9588 PMID: 10677260.

54. Moss JB X-NJ, Shapiro M.D., Nayeem S.M., McCaffery P, Draeger U.C., and Rosenthal N. Dynamic Patterns of Retinoic Acid Synthesis and Response in the Developing Mammalian Heart. Developmental Biology. 1998; 199:55–71. https://doi.org/10.1006/dbio.1998.8911 PMID: 9676192

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る