リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Photocatalytic Reaction in Aqueous Suspension: FTIR Spectroscopy with Attenuated Total Reflection in Diamonds」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Photocatalytic Reaction in Aqueous Suspension: FTIR Spectroscopy with Attenuated Total Reflection in Diamonds

Fu, Zhebin Onishi, Hiroshi 神戸大学

2023.09.19

概要

The photocatalytic conversion of an organic compound on rutile nanoparticles dispersed in aqueous solutions was characterized by infrared absorption spectroscopy. A diamond prism for total reflection of infrared light provided convenient and reliable access to the absorption spectrum of adsorbed chemical species photocatalytically converted under ultraviolet light irradiation. Pivalic acid, a reactant to be decarboxylated by hole capture, was dissolved in water at concentrations of 100–3 mmol L⁻¹ and exhibited vibrational bands of 0.01–0.001 absorbance in the 1500–1100 cm⁻¹ wave number region. When rutile particles were suspended in the solutions, dissociative adsorption leading to the formation of pivalate anions on the particles was detected in vibrational spectra. The adsorbed pivalate anions decomposed by ultraviolet light irradiation through the prism, releasing CO₂. In an anaerobic atmosphere, the excited electrons were accommodated in the particles as small polarons, resulting in an optical absorption centered at 7000 cm⁻¹. Conversely, in an aerobic atmosphere, the electrons were transferred to the surrounding atmosphere, eliminating the polaron-induced absorption. This study demonstrates the feasibility of infrared absorption spectroscopy for operando monitoring of vibrational and electronic transitions, enabling the tracking of photochemical reactions at liquid–solid interfaces.

この論文で使われている画像

参考文献

(1) Fujishima, A.; Rao, T. N.; Tryk, D. A. Titanium dioxide

photocatalysis. J. Photochem. Photobiol., C 2000, 1, 1−21.

(2) Wang, Q.; Domen, K. Particulate Photocatalysts for Light- Driven

Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem.

Rev. 2020, 120, 919−985.

(3) Kranz, C.; Wächtler, M. Characterizing photocatalysts for water

splitting: from atoms to bulk and from slow to ultrafast processes. Chem.

Soc. Rev. 2021, 50, 1407−1437.

(4) Yamakata, A.; Ishibashi, T.; Onishi, H. Kinetics of the

Photocatalytic Water-Splitting Reaction on TiO2 and Pt/TiO2 Studied

by Time-Resolved Infrared Absorption Spectroscopy. J. Mol. Catal. A:

Chem. 2003, 199, 85−94.

(5) Sezen, H.; Buchholz, M.; Nefedov, A.; Natzeck, C.; Heissler, S.; Di

Valentin, C.; Wöll, C. Probing electrons in TiO2 polaronic trap states by

IR-absorption: evidence for the existence of hydrogenic states. Sci. Rep.

2014, 4, 3808.

(6) Savory, D. M.; McQuillan, A. J. IR spectroscopic behavior of

polaronic trapped electrons in TiO2 under aqueous photocatalytic

conditions. J. Phys. Chem. C 2014, 118, 13680−13692.

(7) Fu, Z.; Hirai, T.; Onishi, H. Long-Life Electrons in Metal-Doped

Alkali-Metal Tantalate Photocatalysts Excited under Water. J. Phys.

Chem. C 2021, 125, 26398−26405.

(8) Fu, Z.; Onishi, H. Infrared and near-Infrared Spectrometry of

Anatase and Rutile Particles Bandgap Excited in Liquid. J. Phys. Chem. B

2023, 127, 321−327.

(9) Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep.

2003, 48, 53−229.

(10) Sherrill, A. B.; Barteau, M. A. Oxide Surfaces; Woodruff, D. P.,

Ed.; Elsevier: Amsterdam, 2001; pp 409−442.

(11) Egdell, R. G.; Jones, F. H. Structure and reactivity of oxide

surfaces: new perspectives from scanning tunnelling microscopy. J.

Mater. Chem. 1998, 8, 469−484.

(12) Lai, X.; Clair, T.; Valden, M.; Goodman, D. W. Scanning

tunneling microscopy studies of metal clusters supported on TiO2

(110): Morphology and electronic structure. Prog. Surf. Sci. 1998, 59,

25−52.

(13) Bonnell, D. A. Scanning tunneling microscopy and spectroscopy

of oxide surfaces. Prog. Surf. Sci. 1998, 57, 187−252.

(14) Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides;

Cambridge University Press: Cambridge, 1994.

5. CONCLUSIONS

This study presents the characterization of rutile particles

suspended in aqueous solutions of pivalic acid using IR

absorption. The diamond prism, used for total reflection of IR

light, provided a convenient and reliable method to study the IR

absorption spectrum of suspensions under UV light irradiation.

When rutile particles were introduced into the solutions, the

vibrational bands associated with the COH group of pivalic acid

disappeared, indicating the dissociative adsorption of pivalic

acid onto the particles. The adsorbed pivalate anions were found

to capture photoexcited holes, releasing CO2 and hydrocarbons.

In the suspension exposed to an N2 atmosphere, the excited

electrons remained within the particles as small polarons,

exhibiting optical absorption centered at 7000 cm−1. In contrast,

when the suspension was exposed to air, the electrons were

consumed to produce water, preventing the presence of polaroninduced absorption. Overall, this research demonstrates the

feasibility of the ATR-based IR spectroscopy for the operando

characterization of photochemical reactions at liquid−solid

interfaces. This was achieved by simultaneously monitoring

vibrational and electronic transitions.

Article

AUTHOR INFORMATION

Corresponding Authors

Zhebin Fu − Department of Chemistry, School of Science, Kobe

University, Kobe, Hyogo 657-8501, Japan; Research Institute

for Integrated Science, Kanagawa University, Yokohama,

Kanagawa 221-8686, Japan; orcid.org/0000-0003-10174955; Email: fu-zhebin@kanagawa-u.ac.jp

33829

https://doi.org/10.1021/acsomega.3c04330

ACS Omega 2023, 8, 33825−33830

ACS Omega

http://pubs.acs.org/journal/acsodf

Article

(15) Onishi, H.; Iwasawa, Y. STM-Imaging of Formate Intermediates

Adsorbed on a TiO2(110) Surface. Chem. Phys. Lett. 1994, 226, 111−

114.

(16) Henderson, M. A.; White, J. M.; Uetsuka, H.; Onishi, H.

Photochemical Charge Transfer and Trapping at the Interface between

an Organic Adlayer and an Oxide Semiconductor. J. Am. Chem. Soc.

2003, 125, 14974−14975.

(17) Uetsuka, H.; Onishi, H.; Henderson, M. A.; White, J. M.

Photoinduced Redox Reaction Coupled with Limited Electron

Mobility at Metal Oxide Surface. J. Phys. Chem. B 2004, 108, 10621−

10624.

(18) Solubility of pivalic acid to water is 25 g L−1 at 20 °C according to

https://www.tcichemicals.com/TH/en/p/P0461.

(19) Refractive index of diamond, water, and rutile was quoted from

CRC Handbook of Chemistry and Physics, 92nd ed.; Haynes, W. M., Lide,

D. R., Eds.; CRC Press: Boca Raton, FL, 2011; Chapter 10 and 12.

(20) Maeda, A.; Ishibashi, T. Time-resolved IR observation of a

photocatalytic reaction of pivalic acid on platinized titanium dioxide.

Chem. Phys. 2013, 419, 167−171.

(21) Quilès, F.; Burneau, A.; Gross, N. Vibrational Spectroscopic

Study of the Complexation of Mercury(II) by Substituted Acetates in

Aqueous Solutions. Appl. Spectrosc. 1999, 53, 1061−1070.

(22) Schneider, J.; Bahnemann, D. W. Undesired Role of Sacrificial

Reagents in Photocatalysis. J. Phys. Chem. Lett. 2013, 4, 3479−3483.

Recommended by ACS

Oxygen Vacancy-Rich TiO2 as an Efficient Non-noble Metal

Catalyst toward Mild Oxidation of Methane Using Hydrogen

Peroxide as the Oxidant

Haibin Yin, Hongliang Li, et al.

MAY 22, 2023

ACS CATALYSIS

READ

Adsorption and Photocatalytic Degradation of Methylene

Blue on TiO2 Thin Films Impregnated with Anderson-Evans

Al-Polyoxometalates: Experimental and DFT Study

Freider Duran, Ximena Zarate, et al.

JULY 20, 2023

ACS OMEGA

READ

Photoinduced Adsorption and Oxidation of SO2 on Anatase

TiO2(101)

David Langhammer, Lars Österlund, et al.

DECEMBER 17, 2020

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

READ

Caveats in the Use of Tertiary Butyl Alcohol as a Probe for

Hydroxyl Radical Involvement in Conventional Ozonation

and Catalytic Ozonation Processes

Shikha Garg, T. David Waite, et al.

MAY 05, 2022

ACS ES&T ENGINEERING

READ

Get More Suggestions >

33830

https://doi.org/10.1021/acsomega.3c04330

ACS Omega 2023, 8, 33825−33830

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る