リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Phosphoregulation of DSB-1 mediates control of meiotic double-strand break activity

Guo, Heyun Stamper, Ericca L Sato-Carlton, Aya Shimazoe, Masa A Li, Xuan Zhang, Liangyu Stevens, Lewis Tam, KC Jacky Dernburg, Abby F Carlton, Peter M 京都大学 DOI:10.7554/eLife.77956

2022

概要

In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4[PPH-4.1] phosphatase and ATR[ATL-1] kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants as well as in the wild type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4[PPH-4.1], ATR[ATL-1], and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.

この論文で使われている画像

参考文献

Arribere JA, Bell RT, Fu BXH, Artiles KL, Hartman PS, Fire AZ. 2014. Efficient marker-­free recovery of custom

genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans. Genetics 198:837–846. DOI: https://doi.​

org/10.1534/genetics.114.169730, PMID: 25161212

Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. 2000. Chromosome synapsis defects and sexually dimorphic

meiotic progression in mice lacking Spo11. Molecular Cell 6:989–998. DOI: https://doi.org/10.1016/s1097-​

2765(00)00098-8, PMID: 11106739

Bhalla N, Dernburg AF. 2005. A conserved checkpoint monitors meiotic chromosome synapsis in Caenorhabditis

elegans. Science 310:1683–1686. DOI: https://doi.org/10.1126/science.1117468, PMID: 16339446

Blitzblau HG, Hochwagen A. 2013. ATR/Mec1 prevents lethal meiotic recombination initiation on partially

replicated chromosomes in budding yeast. eLife 2:e00844. DOI: https://doi.org/10.7554/eLife.00844, PMID:

24137535

Bradley RK, Roberts A, Smoot M, Juvekar S, Do J, Dewey C, Holmes I, Pachter L. 2009. Fast statistical

alignment. PLOS Computational Biology 5:e1000392. DOI: https://doi.org/10.1371/journal.pcbi.1000392,

PMID: 19478997

Brenner S. 1974. The genetics of Caenorhabditis elegans. Genetics 77:71–94. DOI: https://doi.org/10.1093/​

genetics/77.1.71, PMID: 4366476

Burel JM, Besson S, Blackburn C, Carroll M, Ferguson RK, Flynn H, Gillen K, Leigh R, Li S, Lindner D, Linkert M,

Moore WJ, Ramalingam B, Rozbicki E, Tarkowska A, Walczysko P, Allan C, Moore J, Swedlow JR. 2015.

Publishing and sharing multi-­dimensional image data with OMERO. Mammalian Genome 26:441–447. DOI:

https://doi.org/10.1007/s00335-015-9587-6, PMID: 26223880

Carballo JA, Panizza S, Serrentino ME, Johnson AL, Geymonat M, Borde V, Klein F, Cha RS. 2013. Budding yeast

ATM/ATR control meiotic double-­strand break (DSB) levels by down-­regulating Rec114, an essential

component of the DSB-­machinery. PLOS Genetics 9:e1003545. DOI: https://doi.org/10.1371/journal.pgen.​

1003545

Carlton P. 2022. deltavisionquant. swh:1:rev:7faed1a32db1958b5677971c7ab5da823d04f1c9. Software

Heritage. https://archive.softwareheritage.org/swh:1:dir:638aa3f08201e88cfa7daeaecc6c67cd21f0e0d4;​

origin=https://github.com/pmcarlton/deltavisionquant;visit=swh:1:snp:a6a10e0b064ebfc676ae3171ea036313​

41860f27;anchor=swh:1:rev:7faed1a32db1958b5677971c7ab5da823d04f1c9

Chen H, Hughes DD, Chan TA, Sedat JW, Agard DA. 1996. IVE (Image Visualization Environment): a software

platform for all three-­dimensional microscopy applications. Journal of Structural Biology 116:56–60. DOI:

https://doi.org/10.1006/jsbi.1996.0010, PMID: 8742723

Chin GM, Villeneuve AM. 2001. C. elegans mre-­11 is required for meiotic recombination and DNA repair but is

dispensable for the meiotic G(2) DNA damage checkpoint. Genes & Development 15:522–534. DOI: https://​

doi.org/10.1101/gad.864101, PMID: 11238374

Chuang CN, Cheng YH, Wang TF. 2012. Mek1 stabilizes Hop1-­Thr318 phosphorylation to promote interhomolog

recombination and checkpoint responses during yeast meiosis. Nucleic Acids Research 40:11416–11427. DOI:

https://doi.org/10.1093/nar/gks920, PMID: 23047948

Claeys Bouuaert C, Pu S, Wang J, Oger C, Daccache D, Xie W, Patel DJ, Keeney S. 2021. DNA-­driven

condensation assembles the meiotic DNA break machinery. Nature 592:144–149. DOI: https://doi.org/10.​

1038/s41586-021-03374-w, PMID: 33731927

Couteau F, Zetka M. 2011. DNA damage during meiosis induces chromatin remodeling and synaptonemal

complex disassembly. Developmental Cell 20:353–363. DOI: https://doi.org/10.1016/j.devcel.2011.01.015,

PMID: 21397846

Dainat J, Hereñú D, Pucholt P. 2020. NBISweden/AGAT: AGAT-­v0.5.1. v0.5.1. Zenodo. https://doi.org/10.5281/​

zenodo.4205393​DOI: https://doi.org/doi:10.5281/ZENODO.3552717

Davis P, Zarowiecki M, Arnaboldi V, Becerra A, Cain S, Chan J, Chen WJ, Cho J, da Veiga Beltrame E,

Diamantakis S, Gao S, Grigoriadis D, Grove CA, Harris TW, Kishore R, Le T, Lee RYN, Luypaert M, Müller HM,

Nakamura C, et al. 2022. WormBase in 2022-­data, processes, and tools for analyzing Caenorhabditis elegans.

Genetics 220:iyac003. DOI: https://doi.org/10.1093/genetics/iyac003, PMID: 35134929

Dereli I, Stanzione M, Olmeda F, Papanikos F, Baumann M, Demir S, Carofiglio F, Lange J, de Massy B,

Baarends WM, Turner J, Rulands S, Tóth A. 2021. Four-­pronged negative feedback of DSB machinery in meiotic

Guo et al. eLife 2022;11:e77956. DOI: https://doi.org/10.7554/eLife.77956

26 of 30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology | Genetics and Genomics

Research article

DNA-­break control in mice. Nucleic Acids Research 49:2609–2628. DOI: https://doi.org/10.1093/nar/gkab082,

PMID: 33619545

Dernburg AF, McDonald K, Moulder G, Barstead R, Dresser M, Villeneuve AM. 1998. Meiotic recombination in

C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell

94:387–398. DOI: https://doi.org/10.1016/s0092-8674(00)81481-6, PMID: 9708740

Duursma AM, Driscoll R, Elias JE, Cimprich KA. 2013. A role for the MRN complex in ATR activation via TOPBP1

recruitment. Molecular Cell 50:116–122. DOI: https://doi.org/10.1016/j.molcel.2013.03.006, PMID: 23582259

Eaton JW, Bateman D, Hauberg S, Wehbring R. 2020. GNU Octave version 5.2.0 manual: a high-­level interactive

language for numerical computations. GNU Octave.

Emms DM, Kelly S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome

Biology 20:238. DOI: https://doi.org/10.1186/s13059-019-1832-y, PMID: 31727128

Emms D. 2022. OrthoFinder: phylogenetic orthology inference for comparative genomics. 3.0. GitHub. https://​

github.com/davidemms/OrthoFinder

Falk JE, Chan AC, Hoffmann E, Hochwagen A. 2010. A Mec1- and PP4-­dependent checkpoint couples

centromere pairing to meiotic recombination. Developmental Cell 19:599–611. DOI: https://doi.org/10.1016/j.​

devcel.2010.09.006, PMID: 20951350

Garcia V, Gray S, Allison RM, Cooper TJ, Neale MJ. 2015. Tel1(ATM)-­mediated interference suppresses clustered

meiotic double-­strand-­break formation. Nature 520:114–118. DOI: https://doi.org/10.1038/nature13993,

PMID: 25539084

Garcia-­Muse T, Boulton SJ. 2005. Distinct modes of ATR activation after replication stress and DNA double-­

strand breaks in Caenorhabditis elegans. The EMBO Journal 24:4345–4355. DOI: https://doi.org/10.1038/sj.​

emboj.7600896, PMID: 16319925

Goodyer W, Kaitna S, Couteau F, Ward JD, Boulton SJ, Zetka M. 2008. HTP-­3 links DSB formation with homolog

pairing and crossing over during C. elegans meiosis. Developmental Cell 14:263–274. DOI: https://doi.org/10.​

1016/j.devcel.2007.11.016, PMID: 18267094

Han X, Gomes JE, Birmingham CL, Pintard L, Sugimoto A, Mains PE. 2009. The role of protein phosphatase 4 in

regulating microtubule severing in the Caenorhabditis elegans embryo. Genetics 181:933–943. DOI: https://​

doi.org/10.1534/genetics.108.096016, PMID: 19087961

Hayashi M, Chin GM, Villeneuve AM. 2007. C. elegans germ cells switch between distinct modes of double-­

strand break repair during meiotic prophase progression. PLOS Genetics 3:e191. DOI: https://doi.org/10.1371/​

journal.pgen.0030191, PMID: 17983271

Hinman AW, Yeh HY, Roelens B, Yamaya K, Woglar A, Bourbon HMG, Chi P, Villeneuve AM. 2021.

Caenorhabditis elegans DSB-­3 reveals conservation and divergence among protein complexes promoting

meiotic double-­strand breaks. PNAS 118:e2109306118. DOI: https://doi.org/10.1073/pnas.2109306118, PMID:

34389685

Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. 2017. WormBase ParaSite - a comprehensive resource for

helminth genomics. Molecular and Biochemical Parasitology 215:2–10. DOI: https://doi.org/10.1016/j.​

molbiopara.2016.11.005, PMID: 27899279

Huerta-­Cepas J, Serra F, Bork P. 2016. Ete 3: Reconstruction, analysis, and visualization of phylogenomic data.

Molecular Biology and Evolution 33:1635–1638. DOI: https://doi.org/10.1093/molbev/msw046, PMID:

26921390

Hustedt N, Seeber A, Sack R, Tsai-­Pflugfelder M, Bhullar B, Vlaming H, van Leeuwen F, Guénolé A,

van Attikum H, Srivas R, Ideker T, Shimada K, Gasser SM. 2015. Yeast PP4 interacts with ATR homolog

Ddc2-­Mec1 and regulates checkpoint signaling. Molecular Cell 57:273–289. DOI: https://doi.org/10.1016/j.​

molcel.2014.11.016, PMID: 25533186

Johnson D, Crawford M, Cooper T, Claeys Bouuaert C, Keeney S, Llorente B, Garcia V, Neale MJ. 2021.

Concerted cutting by Spo11 illuminates meiotic DNA break mechanics. Nature 594:572–576. DOI: https://doi.​

org/10.1038/s41586-021-03389-3, PMID: 34108687

Jones MR, Huang JC, Chua SY, Baillie DL, Rose AM. 2012. The atm-­1 gene is required for genome stability in

Caenorhabditis elegans. Molecular Genetics and Genomics 287:325–335. DOI: https://doi.org/10.1007/​

s00438-012-0681-0, PMID: 22350747

Joyce EF, Pedersen M, Tiong S, White-­Brown SK, Paul A, Campbell SD, McKim KS. 2011. Drosophila ATM and

ATR have distinct activities in the regulation of meiotic DNA damage and repair. The Journal of Cell Biology

195:359–367. DOI: https://doi.org/10.1083/jcb.201104121, PMID: 22024169

Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A,

Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-­Paredes B, Nikolov S, Jain R,

Adler J, Back T, et al. 2021. Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589.

DOI: https://doi.org/10.1038/s41586-021-03819-2, PMID: 34265844

Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M,

Welchman DP, Zipperlen P, Ahringer J. 2003. Systematic functional analysis of the Caenorhabditis elegans

genome using RNAi. Nature 421:231–237. DOI: https://doi.org/10.1038/nature01278, PMID: 12529635

Kar FM, Hochwagen A. 2021. Phospho-­Regulation of Meiotic Prophase. Frontiers in Cell and Developmental

Biology 9:667073. DOI: https://doi.org/10.3389/fcell.2021.667073, PMID: 33928091

Karman Z, Rethi-­Nagy Z, Abraham E, Fabri-­Ordogh L, Csonka A, Vilmos P, Debski J, Dadlez M, Glover DM,

Lipinszki Z. 2020. Novel perspectives of target-­binding by the evolutionarily conserved PP4 phosphatase. Open

Biology 10:200343. DOI: https://doi.org/10.1098/rsob.200343, PMID: 33352067

Guo et al. eLife 2022;11:e77956. DOI: https://doi.org/10.7554/eLife.77956

27 of 30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology | Genetics and Genomics

Research article

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in

performance and usability. Molecular Biology and Evolution 30:772–780. DOI: https://doi.org/10.1093/molbev/​

mst010, PMID: 23329690

Kauppi L, Barchi M, Lange J, Baudat F, Jasin M, Keeney S. 2013. Numerical constraints and feedback control of

double-­strand breaks in mouse meiosis. Genes & Development 27:873–886. DOI: https://doi.org/10.1101/gad.​

213652.113, PMID: 23599345

Keeney S, Giroux CN, Kleckner N. 1997. Meiosis-­specific DNA double-­strand breaks are catalyzed by Spo11, a

member of a widely conserved protein family. Cell 88:375–384. DOI: https://doi.org/10.1016/s0092-8674(00)​

81876-0, PMID: 9039264

Keogh MC, Kim JA, Downey M, Fillingham J, Chowdhury D, Harrison JC, Onishi M, Datta N, Galicia S, Emili A,

Lieberman J, Shen X, Buratowski S, Haber JE, Durocher D, Greenblatt JF, Krogan NJ. 2006. A phosphatase

complex that dephosphorylates gammaH2AX regulates DNA damage checkpoint recovery. Nature 439:497–

501. DOI: https://doi.org/10.1038/nature04384, PMID: 16299494

Kim JA, Hicks WM, Li J, Tay SY, Haber JE. 2011. Protein phosphatases pph3, ptc2, and ptc3 play redundant roles

in DNA double-­strand break repair by homologous recombination. Molecular and Cellular Biology 31:507–516.

DOI: https://doi.org/10.1128/MCB.01168-10, PMID: 21135129

Kim S, Peterson SE, Jasin M, Keeney S. 2016. Mechanisms of germ line genome instability. Seminars in Cell &

Developmental Biology 54:177–187. DOI: https://doi.org/10.1016/j.semcdb.2016.02.019, PMID: 26880205

Kleckner N. 1996. Meiosis: how could it work? PNAS 93:8167. DOI: https://doi.org/10.1073/pnas.93.16.8167

Kumar R, Ghyselinck N, Ishiguro KI, Watanabe Y, Kouznetsova A, Höög C, Strong E, Schimenti J, Daniel K,

Toth A, Massy B. 2015. MEI4 – a central player in the regulation of meiotic DNA double-­strand break formation

in the mouse. Journal of Cell Science 128:1800–1811. DOI: https://doi.org/10.1242/jcs.165464

Kumar R, Oliver C, Brun C, Juarez-­Martinez AB, Tarabay Y, Kadlec J, Massy B. 2018. Mouse REC114 is essential

for meiotic DNA double-­strand break formation and forms a complex with MEI4. Life Sci Alliance

1:e201800259. DOI: https://doi.org/10.26508/lsa.201800259

Lange J, Pan J, Cole F, Thelen MP, Jasin M, Keeney S. 2011. ATM controls meiotic double-­strand-­break

formation. Nature 479:237–240. DOI: https://doi.org/10.1038/nature10508, PMID: 22002603

Lee JH, Paull TT. 2004. Direct activation of the ATM protein kinase by the Mre11/Rad50/Nbs1 complex. Science

304:93–96. DOI: https://doi.org/10.1126/science.1091496, PMID: 15064416

Lee DH, Pan Y, Kanner S, Sung P, Borowiec JA, Chowdhury D. 2010. A PP4 phosphatase complex

dephosphorylates RPA2 to facilitate DNA repair via homologous recombination. Nature Structural & Molecular

Biology 17:365–372. DOI: https://doi.org/10.1038/nsmb.1769, PMID: 20154705

Letunic I, Bork P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of

phylogenetic and other trees. Nucleic Acids Research 44:W242–W245. DOI: https://doi.org/10.1093/nar/​

gkw290, PMID: 27095192

Li J, Hooker GW, Roeder GS. 2006. Saccharomyces cerevisiae Mer2, Mei4 and Rec114 form a complex required

for meiotic double-­strand break formation. Genetics 173:1969–1981. DOI: https://doi.org/10.1534/genetics.​

106.058768, PMID: 16783010

Li W, Yanowitz JL. 2019. Atm and atr influence meiotic crossover formation through antagonistic and overlapping

functions in Caenorhabditis elegans Genetics 212:431–443. DOI: https://doi.org/10.1534/genetics.119.302193,

PMID: 31015193

Liu H, Gordon SG, Rog O. 2021. Heterologous synapsis in C. elegans is regulated by meiotic double-­strand

breaks and crossovers. Chromosoma 130:237–250. DOI: https://doi.org/10.1007/s00412-021-00763-y, PMID:

34608541

Lukaszewicz A, Lange J, Keeney S, Jasin M. 2018. Control of meiotic double-­strand-­break formation by ATM:

local and global views. Cell Cycle 17:1155–1172. DOI: https://doi.org/10.1080/15384101.2018.1464847, PMID:

29963942

Lukaszewicz A, Lange J, Keeney S, Jasin M. 2021. De novo deletions and duplications at recombination

hotspots in mouse germlines. Cell 184:5970-5984.. DOI: https://doi.org/10.1016/j.cell.2021.10.025, PMID:

34793701

Machovina TS, Mainpal R, Daryabeigi A, McGovern O, Paouneskou D, Labella S, Zetka M, Jantsch V,

Yanowitz JL. 2016. A surveillance system ensures crossover formation in C. elegans. Current Biology 26:2873–

2884. DOI: https://doi.org/10.1016/j.cub.2016.09.007, PMID: 27720619

MacQueen AJ, Villeneuve AM. 2001. Nuclear reorganization and homologous chromosome pairing during

meiotic prophase require C. elegans chk-­2. Genes & Development 15:1674–1687. DOI: https://doi.org/10.​

1101/gad.902601, PMID: 11445542

MacQueen AJ, Phillips CM, Bhalla N, Weiser P, Villeneuve AM, Dernburg AF. 2005. Chromosome sites play dual

roles to establish homologous synapsis during meiosis in C. elegans. Cell 123:1037–1050. DOI: https://doi.org/​

10.1016/j.cell.2005.09.034, PMID: 16360034

Maleki S, Neale MJ, Arora C, Henderson KA, Keeney S. 2007. Interactions between Mei4, Rec114, and other

proteins required for meiotic DNA double-­strand break formation in Saccharomyces cerevisiae. Chromosoma

116:471–486. DOI: https://doi.org/10.1007/s00412-007-0111-y, PMID: 17558514

Malone RE, Bullard S, Hermiston M, Rieger R, Cool M, Galbraith A. 1991. Isolation of mutants defective in early

steps of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 128:79–88. DOI: https://doi.​

org/10.1093/genetics/128.1.79, PMID: 2060778

Guo et al. eLife 2022;11:e77956. DOI: https://doi.org/10.7554/eLife.77956

28 of 30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology | Genetics and Genomics

Research article

McKim KS, Green-­Marroquin BL, Sekelsky JJ, Chin G, Steinberg C, Khodosh R, Hawley RS. 1998. Meiotic

synapsis in the absence of recombination. Science 279:876–878. DOI: https://doi.org/10.1126/science.279.​

5352.876, PMID: 9452390

Menees TM, Roeder GS. 1989. MEI4, a yeast gene required for meiotic recombination. Genetics 123:675–682.

DOI: https://doi.org/10.1093/genetics/123.4.675, PMID: 2693205

Mets DG, Meyer BJ. 2009. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by

controlling chromosome structure. Cell 139:73–86. DOI: https://doi.org/10.1016/j.cell.2009.07.035, PMID:

19781752

Mirdita M, Schütze K, Moriwaki Y, Heo L, Ovchinnikov S, Steinegger M. 2021. ColabFold - Making Protein

Folding Accessible to All. bioRxiv. DOI: https://doi.org/10.1101/2021.08.15.456425

Miyazaki T, Bressan DA, Shinohara M, Haber JE, Shinohara A. 2004. In vivo assembly and disassembly of Rad51

and Rad52 complexes during double-­strand break repair. The EMBO Journal 23:939–949. DOI: https://doi.org/​

10.1038/sj.emboj.7600091, PMID: 14765116

Mohibullah N, Keeney S. 2016. Numerical and spatial patterning of yeast meiotic DNA breaks by Tel1. Genome

Research 27:278–288. DOI: https://doi.org/10.1101/gr.213587.116

Molnar M, Parisi S, Kakihara Y, Nojima H, Yamamoto A, Hiraoka Y, Bozsik A, Sipiczki M, Kohli J. 2001.

Characterization of rec7, an early meiotic recombination gene in Schizosaccharomyces pombe. Genetics

157:519–532. DOI: https://doi.org/10.1093/genetics/157.2.519, PMID: 11156975

Nadarajan S, Lambert TJ, Altendorfer E, Gao J, Blower MD, Waters JC, Colaiácovo MP. 2017. Polo-­like kinase-­

dependent phosphorylation of the synaptonemal complex protein SYP-­4 regulates double-­strand break

formation through a negative feedback loop. eLife 6:e23437. DOI: https://doi.org/10.7554/eLife.23437, PMID:

28346135

Nageswaran DC, Kim J, Lambing C, Kim J, Park J, Kim EJ, Cho HS, Kim H, Byun D, Park YM, Kuo P, Lee S,

Tock AJ, Zhao X, Hwang I, Choi K, Henderson IR. 2021. High crossover rate1 encodes protein phosphatase x1

and restricts meiotic crossovers in arabidopsis. Nature Plants 7:452–467. DOI: https://doi.org/10.1038/​

s41477-021-00889-y, PMID: 33846593

Nguyen L-­T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-­TREE: a fast and effective stochastic algorithm for

estimating maximum-­likelihood phylogenies. Molecular Biology and Evolution 32:268–274. DOI: https://doi.​

org/10.1093/molbev/msu300, PMID: 25371430

Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi Z, Uversky VN, Obradovic Z,

Kurgan L, Dunker AK, Gough J. 2013. D2D2D. Nucleic Acids Research 41:D508–D516. DOI: https://doi.org/10.​

1093/nar/gks1226, PMID: 23203878

Otsu N. 1975. A threshold selection method from gray-­level histograms. Automatica 11:23–27. DOI: https://doi.​

org/10.1109/TSMC.1979.4310076

Panizza S, Mendoza MA, Berlinger M, Huang L, Nicolas A, Shirahige K, Klein F. 2011. Spo11-­accessory proteins

link double-­strand break sites to the chromosome axis in early meiotic recombination. Cell 146:372–383. DOI:

https://doi.org/10.1016/j.cell.2011.07.003, PMID: 21816273

Pattabiraman D, Roelens B, Woglar A, Villeneuve AM. 2017. Meiotic recombination modulates the structure and

dynamics of the synaptonemal complex during C. elegans meiosis. PLOS Genetics 13:e1006670. DOI: https://​

doi.org/10.1371/journal.pgen.1006670, PMID: 28339470

Phillips CM, Dernburg AF. 2006. A family of zinc-­finger proteins is required for chromosome-­specific pairing and

synapsis during meiosis in C. elegans. Developmental Cell 11:817–829. DOI: https://doi.org/10.1016/j.devcel.​

2006.09.020, PMID: 17141157

Phillips CM, McDonald KL, Dernburg AF. 2009. Cytological analysis of meiosis in Caenorhabditis elegans.

Methods in Molecular Biology 558:171–195. DOI: https://doi.org/10.1007/978-1-60761-103-5_11, PMID:

19685325

Raices M, Bowman R, Smolikove S, Yanowitz JL. 2021. Aging negatively impacts dna repair and bivalent

formation in the C. elegans germ line. Frontiers in Cell and Developmental Biology 9:695333. DOI: https://doi.​

org/10.3389/fcell.2021.695333, PMID: 34422819

Roeder GS. 1995. Sex and the single cell: meiosis in yeast. PNAS 92:10450–10456. DOI: https://doi.org/10.​

1073/pnas.92.23.10450

Roeder GS, Bailis JM. 2000. The pachytene checkpoint. Trends in Genetics 16:395–403. DOI: https://doi.org/10.​

1016/s0168-9525(00)02080-1, PMID: 10973068

Roelens B, Schvarzstein M, Villeneuve AM. 2015. Manipulation of karyotype in Caenorhabditis elegans reveals

multiple inputs driving pairwise chromosome synapsis during meiosis. Genetics 201:1363–1379. DOI: https://​

doi.org/10.1534/genetics.115.182279, PMID: 26500263

Romanienko PJ, Camerini-­Otero RD. 2000. The mouse Spo11 gene is required for meiotic chromosome

synapsis. Molecular Cell 6:975–987. DOI: https://doi.org/10.1016/s1097-2765(00)00097-6, PMID: 11106738

Rosu S, Zawadzki KA, Stamper EL, Libuda DE, Reese AL, Dernburg AF, Villeneuve AM. 2013. The C. elegans

DSB-­2 protein reveals a regulatory network that controls competence for meiotic DSB formation and promotes

crossover assurance. PLOS Genetics 9:e1003674. DOI: https://doi.org/10.1371/journal.pgen.1003674

Sato-­Carlton A, Li X, Crawley O, Testori S, Martinez-­Perez E, Sugimoto A, Carlton PM. 2014. Protein

phosphatase 4 promotes chromosome pairing and synapsis, and contributes to maintaining crossover

competence with increasing age. PLOS Genetics 10:e1004638. DOI: https://doi.org/10.1371/journal.pgen.​

1004638, PMID: 25340746

Sato-­Carlton A, Nakamura-­Tabuchi C, Li X, Boog H, Lehmer MK, Rosenberg SC, Barroso C, Martinez-­Perez E,

Corbett KD, Carlton PM. 2020. Phosphoregulation of HORMA domain protein HIM-­3 promotes asymmetric

Guo et al. eLife 2022;11:e77956. DOI: https://doi.org/10.7554/eLife.77956

29 of 30

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology | Genetics and Genomics

Research article

synaptonemal complex disassembly in meiotic prophase in Caenorhabditis elegans. PLOS Genetics

16:e1008968. DOI: https://doi.org/10.1371/journal.pgen.1008968, PMID: 33175901

Schindelin J, Arganda-­Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,

Schmid B, Tinevez J-­Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-­source

platform for biological-­image analysis. Nature Methods 9:676–682. DOI: https://doi.org/10.1038/nmeth.2019,

PMID: 22743772

Stamper EL, Rodenbusch SE, Rosu S, Ahringer J, Villeneuve AM, Dernburg AF. 2013. Identification of DSB-­1, a

protein required for initiation of meiotic recombination in Caenorhabditis elegans, illuminates a crossover

assurance checkpoint. PLOS Genetics 9:e1003679. DOI: https://doi.org/10.1371/journal.pgen.1003679, PMID:

23990794

Steinegger M. 2022. ColabFold. v1.3.0. GitHub. https://github.com/sokrypton/ColabFold

Stevens L, Félix MA, Beltran T, Braendle C, Caurcel C, Fausett S, Fitch D, Frézal L, Gosse C, Kaur T, Kiontke K,

Newton MD, Noble LM, Richaud A, Rockman MV, Sudhaus W, Blaxter M. 2019. Comparative genomics of 10

new Caenorhabditis species. Evol Lett 3:217–236. DOI: https://doi.org/10.1002/evl3.110

Sumiyoshi E, Sugimoto A, Yamamoto M. 2002. Protein phosphatase 4 is required for centrosome maturation in

mitosis and sperm meiosis in C. elegans. Journal of Cell Science 115:1403–1410. DOI: https://doi.org/10.1242/​

jcs.115.7.1403, PMID: 11896188

Tessé S, Storlazzi A, Kleckner N, Gargano S, Zickler D. 2003. Localization and roles of Ski8p protein in Sordaria

meiosis and delineation of three mechanistically distinct steps of meiotic homolog juxtaposition. PNAS

100:12865–12870. DOI: https://doi.org/10.1073/pnas.2034282100, PMID: 14563920

Tessé S, Bourbon HM, Debuchy R, Budin K, Dubois E, Liangran Z, Antoine R, Piolot T, Kleckner N, Zickler D,

Espagne E. 2017. Asy2/Mer2: an evolutionarily conserved mediator of meiotic recombination, pairing, and

global chromosome compaction. Genes & Development 31:1880–1893. DOI: https://doi.org/10.1101/gad.​

304543.117, PMID: 29021238

Ueki Y, Kruse T, Weisser MB, Sundell GN, Larsen MSY, Mendez BL, Jenkins NP, Garvanska DH, Cressey L,

Zhang G, Davey N, Montoya G, Ivarsson Y, Kettenbach AN, Nilsson J. 2019. A consensus binding motif for the

pp4 protein phosphatase. Molecular Cell 76:953–964. DOI: https://doi.org/10.1016/j.molcel.2019.08.029,

PMID: 31585692

UniProt Consortium. 2021. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research

49:D480–D489. DOI: https://doi.org/10.1093/nar/gkaa1100

Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y. 2003. Requirement of the MRN complex for

ATM activation by DNA damage. The EMBO Journal 22:5612–5621. DOI: https://doi.org/10.1093/emboj/​

cdg541, PMID: 14532133

Villoria MT, Gutiérrez-­Escribano P, Alonso-­Rodríguez E, Ramos F, Merino E, Campos A, Montoya A, Kramer H,

Aragón L, Clemente-­Blanco A. 2019. PP4 phosphatase cooperates in recombinational DNA repair by

enhancing double-­strand break end resection. Nucleic Acids Research 47:10706–10727. DOI: https://doi.org/​

10.1093/nar/gkz794, PMID: 31544936

Yadav VK, Claeys Bouuaert C. 2021. Mechanism and control of meiotic dna double-­strand break formation in S.

cerevisiae. Frontiers in Cell and Developmental Biology 9:642737. DOI: https://doi.org/10.3389/fcell.2021.​

642737, PMID: 33748134

Zhang L, Kim KP, Kleckner NE, Storlazzi A. 2011. Meiotic double-­strand breaks occur once per pair of (sister)

chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. PNAS 108:20036–20041. DOI:

https://doi.org/10.1073/pnas.1117937108, PMID: 22123968

Zhang L, Ward JD, Cheng Z, Dernburg AF. 2015. The auxin-­inducible degradation (AID) system enables versatile

conditional protein depletion in C. elegans. Development 142:4374–4384. DOI: https://doi.org/10.1242/dev.​

129635, PMID: 26552885

Guo et al. eLife 2022;11:e77956. DOI: https://doi.org/10.7554/eLife.77956

30 of 30

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る