リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「TDP2 suppresses genomic instability induced by androgen in the epithelial cells of prostate glands」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

TDP2 suppresses genomic instability induced by androgen in the epithelial cells of prostate glands

Mahmud, Md Rasel Al 京都大学 DOI:10.14989/doctor.k23090

2021.03.23

概要

Androgens stimulate the proliferation of epithelial cells in the prostate by activating Topoisomerase 2 (TOP2) and regulating the transcription of target genes. TOP2 resolves the entanglement of genomic DNA by transiently generating double-strand breaks (DSBs), where TOP2 homodimers covalently bind to 5’ DSB ends, called TOP2- DNA cleavage complexes (TOP2ccs). When TOP2 fails to rejoin TOP2ccs generating stalled TOP2ccs, tyrosyl DNA phosphodiesterase-2 (TDP2) removes 5’ TOP2 adducts from stalled TOP2ccs prior to the ligation of the DSBs by nonhomologous end joining (NHEJ), the dominant DSB repair pathway in G0/G1 phases. Previously it was shown that estrogens frequently generate stalled TOP2ccs in G0/G1 phases. Here it is shown that a male hormone testosterone cause genotoxicity in vitro and in vivo; and it could be a potential mechanism of prostate tumorigenesis. In vitro, it is demonstrated that testosterone-induced DNA damages are mediated by Topoisomerase 2 (TOP2), and TDP2/NHEJ pathway is the critical regulator of TOP2-induced DNA damages. In vivo, TDP2-deficient luminal prostate cells are more proliferative than TDP2-proficient counterparts and exhibited early signs of prostate tumorigenesis. Overall, the work provides important mechanistic insights on the interactions between a sex hormone and DNA repair mechanisms and showed the disruption of the repair mechanism as a potential route for prostate tumorigenesis. In conclusion, physiological concentrations of androgens have very strong genotoxicity, most likely by generating stalled TOP2ccs.

この論文で使われている画像

関連論文

参考文献

Aguilera, A., & García-Muse, T. (2012). R Loops: From transcription byproducts to threats to genome stability. Molecular Cell, 46, 115–124. https://doi.org/10.1016/j.molcel.2012.04.009

Austin, C. A., Lee, K. C., Swan, R. L., Khazeem, M. M., Manville, C. M., Cridland, P., … Cowell, I. G. (2018). TOP2B: The first thirty years. International Journal of Molecular Sciences, 19, 1–21. https://doi.org/10.3390/ijms19092765

Blackford, A. N., & Jackson, S. P. (2017). ATM, ATR, and DNA-PK: The trinity at the heart of the DNA damage response. Molecular Cell, 66, 801–817. https://doi.org/10.1016/j.molcel.2017.05.015

Brawer, M. K. (2005). Prostatic intraepithelial neoplasia: An overview. Reviews in Urology, 7(Suppl 3), S11–S18.

Cheng, L., MacLennan, G. T., & Bostwick, D. G. (Eds.). (2020). 9 - Neoplasms of the Prostate. In Urologic surgical pathology, (4th Edition, pp. 415–525.e42). Elsevier Inc. https://doi.org/10.1016/ B978-0-323-54941-7.00009-8

Corsini, E., Galbiati, V., Papale, A., Kummer, E., Pinto, A., Serafini, M. M., … Racchi, M. (2016). Role of androgens in dhea-induced rack1 expression and cytokine modulation in monocytes. Immunity & Ageing, 13, 20. https://doi.org/10.1186/s12979-016-0075-y

Creamer, B., Shorter, R. G., & Bamforth, J. (1961). The turnover and shedding of epithelial cells. I. The turnover in the gastro-intestinal tract. Gut, 2, 110–118.

El-Alfy, M., Luu-The, V., Huang, X.-F., Berger, L., Labrie, F., & Pelletier, G. (1999). Localization of type 5 17β-hydroxysteroid dehydrogenase, 3β-hydroxysteroid dehydrogenase, and androgen receptor in the human prostate by in situ hybridization and im- munocytochemistry. Endocrinology, 140, 1481–1491. https://doi. org/10.1210/endo.140.3.6585

Fagerberg, L., Hallström, B. M., Oksvold, P., Kampf, C., Djureinovic, D., Odeberg, J., … Uhlén, M. (2014). Analysis of the human tis- sue-specific expression by genome-wide integration of transcrip- tomics and antibody-based proteomics. Molecular & Cellular Proteomics: MCP, 13, 397–406. https://doi.org/10.1074/mcp. M113.035600

Gale, K. C., & Osheroff, N. (1992). Intrinsic intermolecular DNA ligation activity of eukaryotic topoisomerase II. Potential roles in recombination. Journal of Biological Chemistry, 267, 12090–12097.

Gelberg, H. B. (2007). Alimentary system. In M. D. McGavin, & J. F. Zachary (Eds.), Pathologic basis of veterinary disease (4th ed., pp. 342–360). St Louis, MO: Elsevier Mosby. Leisure/Loisir 32, 231–234.

Gómez-Herreros, F., Romero-Granados, R., Zeng, Z., Álvarez-Quilón, A., Quintero, C., Ju, L., … Cortés-Ledesma, F. (2013). TDP2–de- pendent non-homologous end-joining protects against topoisom- erase II–induced DNA breaks and genome instability in cells and in vivo. PLoS Genetics, 9, e1003226. https://doi.org/10.1371/journ al.pgen.1003226

Gómez-Herreros, F., Schuurs-Hoeijmakers, J. H. M., McCormack, M., Greally, M. T., Rulten, S., Romero-Granados, R., … Caldecott, K. W. (2014). TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nature Genetics, 46, 516–521. https://doi.org/10.1038/ng.2929

Gómez-Herreros, F., Zagnoli-Vieira, G., Ntai, I., Martínez-Macías, M. I., Anderson, R. M., Herrero-Ruíz, A., & Caldecott, K. W. (2017). TDP2 suppresses chromosomal translocations induced by DNA to- poisomerase II during gene transcription. Nature Communications, 8, https://doi.org/10.1038/s41467-017-00307-y

Haffner, M. C., Aryee, M. J., Toubaji, A., Esopi, D. M., Albadine, R., Gurel, B., … Yegnasubramanian, S. (2010). Androgen-induced TOP2B-mediated double-strand breaks and prostate cancer gene rearrangements. Nature Genetics, 42, 668–675. https://doi.org/10.1038/ng.613

Henderson, B. E., & Feigelson, H. S. (2000). Hormonal carcino- genesis the number of cell divisions and the opportunity for ran- dom. Carcinogenesis, 21, 427–433. https://doi.org/10.1093/carci n/21.3.427

Hoa, N. N., Shimizu, T., Zhou, Z. W., Wang, Z.-Q., Deshpande, R. A., Paull, T. T., … Sasanuma, H. (2016). Mre11 Is essential for the removal of lethal topoisomerase 2 covalent cleavage com- plexes. Molecular Cell, 64, 580–592. https://doi.org/10.1016/j.molcel.2016.10.011

Horoszewicz, J. S., Leong, S. S., Kawinski, E., Karr, J. P., Rosenthal, H., Chu, T. M., … Murphy, G. P. (1983). LNCaP model of human prostatic carcinoma. Cancer Research, 43, 1809–1818.

Horwich, A., Hugosson, J., de Reijke, T., Wiegel, T., Fizazi, K., Kataja, V., … Wiegel, T. (2013). Prostate cancer: ESMO consensus confer- ence guidelines 2012. Annals of Oncology, 24, 1141–1162. https:// doi.org/10.1093/annonc/mds624

Ishii, K., Imanaka-Yoshida, K., Yoshida, T., & Sugimura, Y. (2008). Role of stromal tenascin-C in mouse prostatic development and ep- ithelial cell differentiation. Developmental Biology, 324, 310–319. https://doi.org/10.1016/j.ydbio.2008.09.029

Itou, J., Takahashi, R., Sasanuma, H., Tsuda, M., Morimoto, S., Matsumoto, Y., … Toi, M. (2020). Estrogen induces mammary ductal dysplasia via the upregulation of Myc expression in a DNA- repair-deficient condition estrogen induces mammary ductal dys- plasia via the upregulation of Myc expression in a DNA-repair- deficient condition. iScience, 23, 100821. https://doi.org/10.1016/j.isci.2020.100821

Jamaspishvili, T., Berman, D. M., Ross, A. E., Scher, H. I., De Marzo, A. M., Squire, J. A., & Lotan, T. L. (2018). Clinical implications of PTEN loss in prostate cancer. Nature Reviews Urology, 15, 222–234. https://doi.org/10.1038/nrurol.2018.9

Kamath, A. T., Pooley, J., O’Keeffe, M. A., Vremec, D., Zhan, Y., Lew, A. M., … Shortman, K. (2000). The development, maturation, and turnover rate of mouse spleen dendritic cell populations. The Journal of Immunology, 165, 6762–6770. https://doi.org/10.4049/jimmunol.165.12.6762

Kemppainen, J. A., Langley, E., Wong, C., Bobseine, K., Kelce, W. R., & Wilson, E. M. (1999). Distinguishing androgen re- ceptor agonists and antagonists: Distinct mechanisms of activa- tion by medroxyprogesterone acetate and dihydrotestosterone. Molecular Endocrinology, 13, 440–454. https://doi.org/10.1210/ mend.13.3.0255

Kerr, J. F. R., & Searle, J. (1973). Deletion of cells by apoptosis during castration-induced involution of the rat prostate. Virchows Archiv B, 13, 87.

Kokontis, J., Takakura, K., Hay, N., & Liao, S. (1994). Increased andro- gen receptor activity and altered c-myc expression in prostate cancer cells after long-term androgen deprivation. Cancer Research, 54, 1566–1573.

La Vignera, S., Condorelli, R. A., Russo, G. I., Morgia, G., & Calogero, A. E. (2016). Endocrine control of benign prostatic hyperplasia. Andrology, 4, 404–411. https://doi.org/10.1111/ andr.12186

Ledesma, F. C., El Khamisy, S. F., Zuma, M. C., Osborn, K., & Caldecott, K. W. (2009). A human 5′-tyrosyl DNA phosphodiester- ase that repairs topoisomerase-mediated DNA damage. Nature, 461, 674–678. https://doi.org/10.1038/nature08444

Liang, J., & Shang, Y. (2013). Estrogen and Cancer. Annual Review of Physiology, 75, 225–240. https://doi.org/10.1146/annurev-physiol-030212-183708

Loeb, L. A., & Harris, C. C. (2008). Advances in chemical carcino- genesis: A historical review and prospective. Cancer Research, 68, 6863–6872. https://doi.org/10.1158/0008-5472.CAN-08-2852

Madabhushi, R. (2018). The roles of DNA topoisomerase IIβ in tran- scription. International Journal of Molecular Sciences, 19, 1–15. https://doi.org/10.3390/ijms19071917

Manville, C. M., Smith, K., Sondka, Z., Rance, H., Cockell, S., Cowell, I. G., … Austin, C. A. (2015). Genome-wide ChIP-seq analysis of human TOP2B occupancy in MCF7 breast cancer epithelial cells. Biology Open, 4, 1436–1447. https://doi.org/10.1242/bio.014308

Mirosevich, J., Bentel, J. M., Zeps, N., Redmond, S. L., D’Antuono, M. F., & Dawkins, H. J. S. (1999). Androgen receptor expression of proliferating basal and luminal cells in adult murine ventral prostate. Journal of Endocrinology, 162, 341–350. https://doi.org/10.1677/joe.0.1620341

Morimoto, S., Tsuda, M., Bunch, H., Sasanuma, H., Austin, C., & Takeda, S. (2019). Type II DNA topoisomerases cause spontaneous double-strand breaks in genomic DNA. Genes, 10, 1–18. https://doi. org/10.3390/genes10110868

Musgrove, E. A., & Sutherland, R. L. (2009). Biological determinants of endocrine resistance in breast cancer. Nature Reviews Cancer, 9, 631–643. https://doi.org/10.1038/nrc2713

Nelson, W. G., Haffner, M. C., & Yegnasubramanian, S. (2018). The structure of the nucleus in normal and neoplastic prostate cells: Untangling the role of type 2 DNA topoisomerases. American Journal of Clinical and Experimental Urology, 6, 107–113.

Nitiss, J. L. (2009). Targeting DNA topoisomerase II in cancer che- motherapy. Nature Reviews Cancer, 9, 338–350. https://doi.org/10.1038/nrc2607

Pommier, Y., Sun, Y., Huang, S. N., & Nitiss, J. L. (2016). Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nature Reviews Molecular Cell Biology, 17, 703–721. https://doi.org/10.1038/nrm.2016.111

Puc, J., Aggarwal, A. K., & Rosenfeld, M. G. (2017). Physiological functions of programmed DNA breaks in signal-induced transcrip-tion. Nature Reviews Molecular Cell Biology, 18, 471–476. https:// doi.org/10.1038/nrm.2017.43

Ran, F. A., Hsu, P. D., Lin, C.-Y., Gootenberg, J. S., Konermann, S., Trevino, A. E., … Zhang, F. (2013). Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 154, 1380–1389. https://doi.org/10.1016/j.cell.2013.08.021

Roy, R., Chun, J., & Powell, S. N. (2012). BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nature Reviews Cancer, 12, 68–78. https://doi.org/10.1038/ nrc3181

Sandford, N. L., Searle, J. W., & Kerr, J. F. R. (1984). Successive waves of apoptosis in the rat prostate after repeated withdrawal of testosterone stimulation. Pathology, 16, 406–410. https://doi. org/10.3109/00313028409084731

Sasanuma, H., Tsuda, M., Morimoto, S., Saha, L. K., Rahman, M. M., Kiyooka, Y., … Takeda, S. (2018). BRCA1 ensures genome integ- rity by eliminating estrogen-induced pathological topoisomerase II- DNA complexes. Proceedings of the National Academy of Sciences of the United States of America, 115, E10642–E10651. https://doi. org/10.1073/pnas.1803177115

Schellenberg, M. J., Lieberman, J. A., Herrero-Ruiz, A., Butler, L. R., Williams, J. G., Muñoz-Cabello, A. M., … Williams, R. S. (2017). ZATT (ZNF451)–mediated resolution of topoisomerase 2 DNA- protein cross-links. Science, 357, 1412–1416.

Schellhammer, P. F., Venner, P., Haas, G. P., Small, E. J., Nieh, P. T., Seabaugh, D. R., … Kolvenbag, G. J. C. M. (1997). Prostate spe- cific antigen decreases after withdrawal of antiandrogen therapy with bicalutamide or flutamide in patients receiving combined an-drogen blockade. Journal of Urology, 157, 1731–1735. https://doi. org/10.1016/S0022-5347(01)64846-8

Shang, Y., Hu, X., DiRenzo, J., Lazar, M. A., & Brown, M. (2000). Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription. Cell, 103, 843–852. https://doi.org/10.1016/S0092-8674(00)00188-4

Stork, C. T., Bocek, M., Crossley, M. P., et al. (2016). Co-transcriptional R-loops are the main cause of estrogen-induced DNA damage. Elife., 5, e17548. https://doi.org/10.7554/eLife.17548

Sugimura, Y., Cunha, G. R., & Donjacour, A. A. (1986). Morphological and histological study of castration-induced degeneration and an- drogen-induced regeneration in the mouse prostate1. Biology of Reproduction, 34, 973–983. https://doi.org/10.1095/biolreprod34.5.973

Toivanen, R., & Shen, M. M. (2017). Prostate organogenesis: Tissue induction, hormonal regulation and cell type specification. Development, 144, 1382–1398. https://doi.org/10.1242/dev.148270 Tran, C., Ouk, S., Clegg, N. J., et al. (2009). Development of a sec- ond-generation antiandrogen for treatment of advanced prostate cancer. Science., 324(5928), 787–790. https://doi.org/10.1126/science.1168175

Wang, C., Mayer, J. A., Mazumdar, A., Fertuck, K., Kim, H., Brown, M., & Brown, P. H. (2011). Estrogen induces c-myc gene expres- sion via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor. Molecular Endocrinology, 25,1527–1538. https://doi.org/10.1210/me.2011-1037

Wang, Q., Li, W., Zhang, Y., Yuan, X., Xu, K., Yu, J., … Brown, M. (2009). Androgen receptor regulates a distinct transcription pro-gram in androgen-independent prostate cancer. Cell, 138, 245–256. https://doi.org/10.1016/j.cell.2009.04.056

Wang, Y., Hayward, S. W., Cao, M., Thayer, K. A., & Cunha, G. R. (2001). Cell differentiation lineage in the prostate. Differentiation, 68, 270–279. https://doi.org/10.1046/j.1432-0436.2001.680414.x

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K., … Stuart, J. M. (2013). The can- cer genome atlas pan-cancer analysis project. Nature Genetics, 45, 1113–1120. https://doi.org/10.1038/ng.2764

Yang, S., Jiang, M., Grabowska, M. M., Li, J., Connelly, Z. M., Zhang, J., … Yu, X. (2016). Androgen receptor differentially regulates the proliferation of prostatic epithelial cells in vitro and in vivo. Oncotarget, 7, 70404–70419.

Yue, F., Cheng, Y., Breschi, A., Vierstra, J., Wu, W., Ryba, T., … Ren, B. (2014). A comparative encyclopedia of DNA elements in the mouse genome. Nature, 515, 355–364. https://doi.org/10.1038/natur e13992

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る