リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A non-catalytic N-terminus domain of WRN prevents mitotic telomere deprotection」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A non-catalytic N-terminus domain of WRN prevents mitotic telomere deprotection

Romero-Zamora, Diana Hayashi, Makoto T. 京都大学 DOI:10.1038/s41598-023-27598-0

2023

概要

Telomeric ends form a loop structure (T-loop) necessary for the repression of ATM kinase activation throughout the normal cell cycle. However, cells undergoing a prolonged mitotic arrest are prone to lose the T-loop, resulting in Aurora B kinase-dependent mitotic telomere deprotection, which was proposed as an anti-tumor mechanism that eliminates precancerous cells from the population. The mechanism of mitotic telomere deprotection has not been elucidated. Here, we show that WRN, a RECQ helicase family member, can suppress mitotic telomere deprotection independently of its exonuclease and helicase activities. Truncation of WRN revealed that N-terminus amino acids 168–333, a region that contains a coiled-coil motif, is sufficient to suppress mitotic telomere deprotection without affecting both mitotic Aurora B-dependent spindle checkpoint and ATM kinase activity. The suppressive activity of the WRN168–333 fragment is diminished in cells partially depleted of TRF2, while WRN is required for complete suppression of mitotic telomere deprotection by TRF2 overexpression. Finally, we found that phosphomimetic but not alanine mutations of putative Aurora B target sites in the WRN¹⁶⁸⁻³³³ fragment abolished its suppressive effect. Our findings reveal a non-enzymatic function of WRN, which may be regulated by phosphorylation in cells undergoing mitotic arrest. We propose that WRN enhances the protective function of TRF2 to counteract the hypothetical pathway that resolves the mitotic T-loop.

この論文で使われている画像

参考文献

1. Lazzerini-Denchi, E. & Sfeir, A. Stop pulling my strings—What telomeres taught us about the DNA damage response. Nat. Rev. Mol. Cell Biol. 17, 364–378 (2016).

2. Grifth, J. D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

3. Tomáška, Ľ, Cesare, A. J., AlTurki, T. M. & Grifth, J. D. Twenty years of t-loops: A case study for the importance of collaboration in molecular biology. DNA Repair 94, 102901 (2020).

4. Doksani, Y., Wu, J. Y., de Lange, T. & Zhuang, X. Super-resolution fuorescence imaging of telomeres reveals TRF2-dependent T-loop formation. Cell 155, 345–356 (2013).

5. Cesare, A. J. & Karlseder, J. A three-state model of telomere control over human proliferative boundaries. Curr. Opin. Cell Biol. 24, 731–738 (2012).

6. Cesare, A. J., Hayashi, M. T., Crabbe, L. & Karlseder, J. Te telomere deprotection response is functionally distinct from the genomic DNA damage response. Mol. Cell 51, 1–15 (2013).

7. Okamoto, K. et al. A two-step mechanism for TRF2-mediated chromosome-end protection. Nature 494, 1–5 (2013).

8. Ly, D. V. et al. Telomere loop dynamics in chromosome end protection. Mol. Cell 71, 510-525.e6 (2018).

9. Benarroch-Popivker, D. et al. TRF2-mediated control of telomere DNA topology as a mechanism for chromosome-end protection. Mol. Cell 61, 1–14 (2016).

10. Kaul, Z., Cesare, A. J., Huschtscha, L. I., Neumann, A. A. & Reddel, R. R. Five dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep. 13, 52–59 (2012).

11. Takai, H., Smogorzewska, A. & de Lange, T. DNA damage foci at dysfunctional telomeres. Curr. Biol. 13, 1549–1556 (2003).

12. van Steensel, B., Smogorzewska, A. & de Lange, T. TRF2 protects human telomeres from end-to-end fusions. Cell 92, 401–413 (1998).

13. Hayashi, M. T., Cesare, A. J., Fitzpatrick, J. A. J., Lazzerini-Denchi, E. & Karlseder, J. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat. Struct. Mol. Biol. 19, 1–9 (2012).

14. Hayashi, M. T., Cesare, A. J., Rivera, T. & Karlseder, J. Cell death during crisis is mediated by mitotic telomere deprotection. Nature 522, 492–496 (2015).

15. Carmena, M., Wheelock, M., Funabiki, H. & Earnshaw, W. C. Te chromosomal passenger complex (CPC): From easy rider to the godfather of mitosis. Nat. Rev. Mol. Cell Biol. 13, 789–803 (2012).

16. Masamsetti, V. P. et al. Replication stress induces mitotic death through parallel pathways regulated by WAPL and telomere deprotection. Nat. Commun. 10, 1–15 (2019).

17. Vannier, J.-B., Pavicic-Kaltenbrunner, V., Petalcorin, M. I. R., Ding, H. & Boulton, S. J. RTEL1 dismantles t loops and counteracts telomeric G4-DNA to maintain telomere integrity. Cell 149, 795–806 (2012).

18. Opresko, P. L. et al. Telomere-binding protein TRF2 binds to and stimulates the Werner and bloom syndrome helicases. J. Biol. Chem. 277, 41110–41119 (2002).

19. Opresko, P. et al. Te Werner syndrome helicase and exonuclease cooperate to resolve telomeric d loops in a manner regulated by TRF1 and TRF2. Mol. Cell 14, 763–774 (2004).

20. Machwe, A., Xiao, L. & Orren, D. K. TRF2 recruits the Werner syndrome (WRN) exonuclease for processing of telomeric DNA. Oncogene 23, 149–156 (2004).

21. Sarek, G. et al. CDK phosphorylation of TRF2 controls t-loop dynamics during the cell cycle. Nature 575, 523–527 (2019).

22. Crabbe, L., Verdun, R. E., Haggblom, C. I. & Karlseder, J. Defective telomere lagging strand synthesis in cells lacking WRN helicase activity. Science 306, 1951–1953 (2004).

23. Ishikawa, N. et al. Accelerated in vivo epidermal telomere loss in Werner syndrome. Aging 3, 417–429 (2011).

24. Orren, D. K., Teodore, S. & Machwe, A. Te Werner syndrome helicase/exonuclease (WRN) disrupts and degrades d-loops in vitro. Biochemistry 41, 13483–13488 (2002).

25. Edwards, D. N., Orren, D. K. & Machwe, A. Strand exchange of telomeric DNA catalyzed by the Werner syndrome protein (WRN) is specifcally stimulated by TRF2. Nucleic Acids Res. 42, 7748–7761 (2014).

26. Mohaghegh, P., Karow, J. K., Brosh, R. M. Jr., Bohr, V. A. & Hickson, I. D. Te Bloom’s and Werner’s syndrome proteins are DNA structure-specifc helicases. Nucleic Acids Res. 29, 2843–2849 (2001).

27. Watanabe, S., Kanda, T. & Yoshiike, K. Human papillomavirus type 16 transformation of primary human embryonic fbroblasts requires expression of open reading frames E6 and E7. J. Virol. 63, 965–969 (1989).

28. Huang, S. et al. Te premature ageing syndrome protein, WRN, is a 3′→5′ exonuclease. Nat. Genet. 20, 114–116 (1998).

29. Perry, J. J. P. et al. WRN exonuclease structure and molecular mechanism imply an editing role in DNA end processing. Nat. Struct. Mol. Biol. 13, 414–422 (2006).

30. Perry, J. J. P. et al. Identifcation of a coiled coil in Werner syndrome protein that facilitates multimerization and promotes exonuclease processivity. J. Biol. Chem. 285, 25699–25707 (2010).

31. Hauf, S. et al. Te small molecule hesperadin reveals a role for aurora B in correcting kinetochore–microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281 (2003).

32. Cheng, W.-H. et al. WRN is required for ATM activation and the S-phase checkpoint in response to interstrand cross-link–induced DNA double-strand breaks. Mol. Biol. Cell 19, 3923–3933 (2008).

33. Timashev, L. A. & Lange, T. D. Characterization of t-loop formation by TRF2. Nucleus 11, 164–177 (2020).

34. Necasová, I., Janoušková, E., Klumpler, T. & Hofr, C. Basic domain of telomere guardian TRF2 reduces d-loop unwinding whereas Rap1 restores it. Nucleic Acids Res. 45, 12170–12180 (2017).

35. Compton, S. A., Tolun, G., Kamath-Loeb, A. S., Loeb, L. A. & Grifth, J. D. Te Werner syndrome protein binds replication fork and holliday junction DNAs as an oligomer. J. Biol. Chem. 283, 24478–24483 (2008).

36. Hengeveld, R. C. C. et al. Development of a chemical genetic approach for human aurora B kinase identifes novel substrates of the chromosomal passenger complex. Mol. Cell. Proteomics 11, 47–59 (2012).

37. Verdun, R. E. & Karlseder, J. Te DNA damage machinery and homologous recombination pathway act consecutively to protect human telomeres. Cell 127, 709–720 (2006).

38. Chen, C.-F. & Brill, S. J. Multimerization domains are associated with apparent strand exchange activity in BLM and WRN DNA helicases. DNA Repair 22, 137–146 (2014).

39. Su, F. et al. Nonenzymatic role for WRN in preserving nascent DNA strands afer replication stress. Cell Rep. 9, 1387–1401 (2014).

40. Kar, A., Willcox, S. & Grifth, J. D. Transcription of telomeric DNA leads to high levels of homologous recombination and t-loops. Nucleic Acids Res. 44, 9369–9380 (2016).

41. Tomaska, L., Nosek, J., Kar, A., Willcox, S. & Grifth, J. D. A new view of the t-loop junction: Implications for self-primed telomere extension, expansion of disease-related nucleotide repeat blocks, and telomere evolution. Front. Genet. 10, 792 (2019).

42. Amiard, S. et al. A topological mechanism for TRF2-enhanced strand invasion. Nat. Struct. Mol. Biol. 14, 147–154 (2007).

43. Shiromizu, T. et al. Identifcation of missing proteins in the neXtProt database and unregistered phosphopeptides in the phosphositeplus database as part of the chromosome-centric human proteome project. J. Proteome Res. 12, 2414–2421 (2013).

44. Giansanti, P., Stokes, M. P., Silva, J. C., Scholten, A. & Heck, A. J. R. Interrogating cAMP-dependent kinase signaling in jurkat t cells via a protein kinase a targeted immune-precipitation phosphoproteomics approach. Mol. Cell. Proteomics 12, 3350–3359 (2013).

45. Dorovkov, M. V., Kostyukova, A. S. & Ryazanov, A. G. Phosphorylation of annexin A1 by TRPM7 kinase: A switch regulating the induction of an α-helix. Biochemistry 50, 2187–2193 (2011).

46. Szilák, L., Moitra, J., Krylov, D. & Vinson, C. Phosphorylation destabilizes α-helices. Nat. Struct. Biol. 4, 112–114 (1997).

47. Groover, S. E., Beasley, M., Ramamurthy, V. & Legleiter, J. Phosphomimetic mutations impact huntingtin aggregation in the presence of a variety of lipid systems. Biochem. 59, 4681–4693 (2020).

48. Mishra, R. et al. Serine phosphorylation suppresses huntingtin amyloid accumulation by altering protein aggregation properties. J. Mol. Biol. 424, 1–14 (2012).

49. Poole, I. C. L. et al. Generation of a human melanocyte cell line by introduction of HPV16 E6 and E7 genes. In Vitro Cell. Dev. Biol. Anim. 33, 42–49 (1997).

50. Cesare, A. J. et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat. Struct. Mol. Biol. 16, 1244–1251 (2009).

51. Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature https://doi.org/10.1038/s41586-021-03819-2 (2021).

52. Mirdita, M. et al. ColabFold: Making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).

53. Myler, L. R. et al. Te evolution of metazoan shelterin. Gene. Dev. 35, 1625–1641 (2021).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る