リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「REMARKS ON THE DERIVATION OF SEVERAL SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS FROM A GENERALIZATION OF THE EINSTEIN EQUATIONS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

REMARKS ON THE DERIVATION OF SEVERAL SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS FROM A GENERALIZATION OF THE EINSTEIN EQUATIONS

Nakamura, Makoto 大阪大学 DOI:10.18910/75916

2020.04

概要

A generalization of the Einstein equations with the cosmological constant is considered for complex line elements. Several second order semilinear partial differential equations are derived from them as semilinear field equations in homogeneous and isotropic spaces. The nonrelativistic limits of the field equations are also considered. The properties of spatial expansion and contraction are studied based on energy estimates of the field equations. Several dissipative and anti-dissipative properties are remarked.

参考文献

[1] J-P. Anker, V. Pierfelice and M. Vallarino: The wave equation on hyperbolic spaces, J. Differ. Equations 252 (2012), 5613–5661.

[2] J-P. Anker and V. Pierfelice: Wave and Klein-Gordon equations on hyperbolic spaces, Anal. PDE 7 (2014), 953–995.

[3] V. Banica: The nonlinear Schro¨dinger equation on hyperbolic space, Comm. Partial Differential Equations 32 (2007), 1643–1677.

[4] D. Baskin: Strichartz estimates on asymptotically de Sitter spaces, Ann. Henri Poincare´ 14 (2013), 221– 252.

[5] S. Carroll: The Cosmological Constant, Living Rev. Relativ. 4 (2001), Article 1.

[6] S. Carroll: Spacetime and geometry, An introduction to general relativity, Addison Wesley, San Francisco, CA, 2004.

[7] T. Cazenave: Semilinear Schro¨dinger equations, Courant Lecture Notes in Mathematics 10, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Prov- idence, RI, 2003.

[8] T. Cazenave and A. Haraux: An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications 13, The Clarendon Press, Oxford University Press, New York, 1998.

[9] P. Cherrier and A. Milani: Linear and quasi-linear evolution equations in Hilbert spaces, Graduate Studies in Mathematics 135, American Mathematical Society, Providence, RI, 2012.

[10] Y. Choquet-Bruhat: Results and open problems in mathematical general relativity, Milan J. Math. 75 (2007), 273–289.

[11] Y. Choquet-Bruhat: General relativity and the Einstein equations, Oxford Mathematical Monographs, Ox- ford University Press, Oxford, 2009.

[12] L. de Broglie: Researches on the quantum theory, Ann. de Physique 10, 22–128.

[13] R. d’Inverno: Introducing Einstein’s relativity, The Clarendon Press, Oxford University Press, New York, 1992.

[14] A. Einstein: U¨ ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesicht-spunkt, Annalen der Physik 17 (1905), 132–148 (German).

[15] H. Epstein and U. Moschella: de Sitter tachyons and related topics, Commun. Math. Phys. 336 (2015), 381–430.

[16] A. Galstian and K. Yagdjian: Global solutions for semilinear Klein-Gordon equations in FLRW spacetimes, Nonlinear Anal., Theory Methods Appl. 113 (2015), 339–356.

[17] A. Galstian and K. Yagdjian: Global in time existence of self-interacting scalar field in de Sitter spacetimes, Nonlinear Anal., Real World Appl. 34 (2017), 110–139.

[18] H.F. M. Goenner: On the History of Unified Field Theories, Living Rev. Relativ 7 (2004), Article 2.

[19] H.F. M. Goenner: On the History of Unified Field Theories. Part II. (ca. 1930–ca. 1965), Living Rev. Relativ 17 (2014), Article 5.

[20] J. Ginibre and G. Velo: The Cauchy problem in local spaces for the complex Ginzburg-Landau equation. I. Compactness methods, Phys. D 95 (1996), 191–228.

[21] A.H. Guth: Inflationary universe: A possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981), 347–356.

[22] J.B. Hartle and S.W. Hawking: Wave function of the universe, Phys. Rev. D (3) 28 (1983), 2960–2975.

[23] P. Hintz and A. Vasy: Semilinear wave equations on asymptotically de Sitter, Kerr-de Sitter and Minkowski spacetimes, Anal. PDE 8 (2015), 1807–1890.

[24] A.D. Ionescu, B. Pausader and G. Staffilani: On the global well-posedness of energy-critical Schro¨dinger equations in curved spaces, Anal. PDE 5 (2012), 705–746.

[25] F. John: The ultrahyperbolic differential equation with four independent variables, Duke Math. J. 4 (1938), 300–322.

[26] A. Joyce, L. Lombriser and F. Schmidt: Dark Energy Versus Modified Gravity, Annual Review of Nu- clear and Particle Science, 66 (2016), 95–122, available at http://www.annualreviews.org/doi/abs/10.1146/ annurev-nucl-102115-044553.

[27] D. Kazanas: Dynamics of the universe and spontaneous symmetry breaking, The Astrophysical Journal 241 (1980), L59–63.

[28] T. Kaluza: Zum Unita¨tsproblem in der Physik, Sitzungsber Preuss. Akad. Wiss. Berlin. (Math. Phys.) (1921), 966–972.

[29] O. Klein: Quantentheorie und fu¨nfdimensionale Relativita¨tstheorie, Zeitschrift fu¨r Physik A. 37 (1926), 895–906.

[30] D. Li, Z. Dai and X. Liu: Long time behaviour for generalized complex Ginzburg-Landau equation, J. Math. Anal. Appl. 330 (2007), 934–948.

[31] J. Metcalfe and M. Taylor: Nonlinear waves on 3D hyperbolic space, Trans. Amer. Math. Soc. 363 (2011), 3489–3529.

[32] J. Metcalfe and M. Taylor: Dispersive wave estimates on 3D hyperbolic space, Proc. Amer. Math. Soc. 140 (2012), 3861–3866.

[33] M. Nakamura: The Cauchy problem for semi-linear Klein-Gordon equations in de Sitter spacetime, J. Math. Anal. Appl. 410 (2014), 445–454.

[34] M. Nakamura: On nonlinear Schro¨dinger equations derived from the nonrelativistic limit of nonlinear Klein-Gordon equations in de Sitter spacetime, J. Differential Equations 259 (2015), 3366–3388.

[35] E.T. Newman: Maxwell’s equations and complex Minkowski space, J. Mathematical Phys. 14 (1973), 102– 103.

[36] S. Perlmutter et al.: Measurements of Ω and Λ from 42 high-redshift supernovae, The Astrophysical J. 517 (1999), 565–586.

[37] R. Penrose: Twistor algebra, J. Mathematical Phys. 8 (1967), 345–366.

[38] A.G. Riess and B.P. Schmidt et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant, The Astronomical J. 116 (1998), 1009–1038.

[39] W. van Saarloos and P.C. Hohenberg: Fronts, pulses, sources and sinks in generalized complex Ginzburg- Landau equations, Phys. D 56 (1992), 303–367.

[40] W. van Saarloos and P. C. Hohenberg: Erratum: “Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations,”, Phys. D 69 (1993), 209.

[41] M. Sami and R. Myrzakulov: Late-time cosmic acceleration: ABCD of dark energy and modified theories of gravity, Internat. J. Modern Phys. D 25 (2016), 1630031, 49 p.

[42] K. Sato: First-order phase transition of a vacuum and the expansion of the Universe, Monthly Notices of Royal Astronomical Society 195 (1981), 467–479.

[43] A. Schmid: A time dependent Ginzburg-Landau equation and its application to the problem of resistivity in the mixed state, Physik der kondensierten Materie 5 (1966), 302–317.

[44] A.A. Starobinsky: A new type of isotropic cosmological models without singularity, Physics Letters B 91 (1980), 99–102.

[45] T. Tao: Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics 106, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2006.

[46] A. Vilenkin: Creation of universes from nothing, Physics Letters B 117 (1982), 25–28.

[47] J. Wess and J. Bagger: Supersymmetry and supergravity, Princeton Series in Physics, Princeton University Press, Princeton, N.J, 1983.

[48] G.C. Wick: Properties of Bethe-Salpeter wave functions, Phys. Rev. (2) 96 (1954), 1124–1134.

[49] K. Yagdjian: Global existence of the scalar field in de Sitter spacetime, J. Math. Anal. Appl. 396 (2012), 323-344.

[50] K. Yagdjian: On the global solutions of the Higgs boson equation, Comm. Partial Differential. Equations 37 (2012), 447–478.

[51] K. Yagdjian: Huygens’ principle for the Klein-Gordon equation in the de Sitter spacetime, J. Math. Phys. 54 (2013), 091503, 18 pp.

[52] S. Zheng: Nonlinear evolution equations, Chapman Hall/CRC Monographs and Surveys in Pure and Ap- plied Mathematics 133, Chapman & Hall/CRC, Boca Raton, FL, 2004.

参考文献をもっと見る