リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「部分切除肺から得た自家細胞をもとに脱細胞化技術で作成した再生肺の移植の検討」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

部分切除肺から得た自家細胞をもとに脱細胞化技術で作成した再生肺の移植の検討

柳谷, 昌弘 東京大学 DOI:10.15083/0002005135

2022.06.22

概要

死因の主要な地位を占める末期肺疾患の有望な治療は同種他家肺移植であるが,拒絶などの問題がある.これらの問題解決のために,レシピエントと遺伝的に同一な細胞に基づいた肺再生が望まれる.臓器にある細胞を完全に除去し,細胞外マトリックスのみの構造物を構築する脱細胞化技術を用いて,我々は肺の臓器再生を試みた.具体的にはドナーから得た臓器を脱細胞化して得られたスキャフォールドに,レシピエント由来の自家細胞を再配置することで臓器再生を行うというものである.

我々は,大動物であるブタモデルにおいて,脱細胞化技術を用いてレシピエント由来の自家細胞をもとに再生肺を構築し,左片肺移植を行ってInvivo機能の評価を行った.この検討の中で我々は次の4つの検討を行った.1つ目は脱細胞化に関する検討である.ドナーブタから得た肺グラフトにドデシル硫酸ナトリウムならびにTritonX-100を肺動脈に灌流する方法を用いて実際に脱細胞化が実現されたかについて検証した.さらに灌流前に気管支内に生理食塩水を注入することでより効果的な脱細胞化が得られるかについても検証した.2つ目の検討はレシピエントブタに対して肺部分切除を行い,自家細胞の分離培養を行うというものである.我々はKRT5陽性p63陽性気道上皮細胞ならびに血管内皮細胞の分離培養を試み,Characterizationを行った.3つ目の検討は,脱細胞化肺スキャフォールドに自家細胞を培養し,実際に自家細胞による再細胞化がなされたかについて検証した.最後に,再細胞化して得られた再生肺をレシピエントブタに左片肺移植を行い4時間生存させ,ガス交換能を調べた.再生肺の左片肺移植のコントロール群として同種他家肺移植,ならびに脱細胞化肺スキャフォールドの左片肺移植を設定した.

1つ目の脱細胞化の結果について,脱細胞化後の肺組織のヘマトキシリンエオジン染色では細胞成分をほとんど認めなかった.さらに正常肺グラフトに比して脱細胞化肺スキャフォールドはDNA量が有意に低かった(35.1±17.1vs.5300±2530μg/mgwet tissue,P<0.001).さらにこの検討の中で我々は,ドデシル硫酸ナトリウムならびにTritonX-100の灌流前に気管支内に生理食塩水を注入することで,より効果的な脱細胞化が実現できることを示した.気管支内生理食塩水を注入した群では,そうでない群に比して有意にスキャフォールドのDNA量が有意に低かった(21.6±5.46vs.48.7±12.3μg/mgwet tissue,P<0.05).

2つ目の検討である自家細胞の分離培養であるが,我々は144mg-1376mgの肺を得て,3週間の培養を経て,気道上皮細胞は平均19.4×105個,血管内皮細胞は平均34.9×105個まで得ることができた.気道上皮細胞は免疫組織化学染色ならびにフローサイトメトリーでほぼ全ての細胞においてKRT5ならびにp63陽性細胞であることを示した.さらに血管内皮細胞も免疫組織化学染色ならびにフローサイトメトリーでほぼ全ての細胞においてCD31陽性細胞であることを示した.

つ目の検討である脱細胞化肺スキャフォールドに対する自家細胞の培養について,我々は血管内皮細胞を2日間,気道上皮細胞を1日間かけて培養した.再細胞化した肺組織のヘマトキシリンエオジン染色で散在性に細胞を確認した.さらに免疫組織化学染色でKRT5陽性p63陽性気道上皮細胞ならびにCD31陽性血管内皮細胞の存在を確認した.4つ目の検討として,再細胞化して得られた再生肺を左片肺移植した.再生肺移植を行った3例ならびに同種他家肺移植を行った3例は全例4時間以上生存したものの,脱細胞化肺スキャフォールドを移植した2例は移植後30分以内に死亡した.移植された再生肺グラフトは再換気直後から著明な嚢胞性変化を示した.再生肺移植群は同種他家肺移植群と比較して移植後4時間酸素ガス交換能はほぼ同等であった.しかしながら,再生肺移植群の二酸化炭素ガス交換能は,同種他家肺移植に比して悪く,移植後4時間の時点で二酸化炭素ガス交換能は低い傾向にあった(3.93±3.61mmHgvs.21.1±13.2mmHg,P=0.096).

脱細胞化肺スキャフォールドを移植した2例の肺組織を検証すると,肺出血像を呈していた.さらに移植後の再生肺グラフトの胸膜損傷部を免疫組織化学染色で調べるとエラスチンが保持されていなかったことが明らかとなった.

本研究は,部分切除から得たレシピエント由来の自家細胞をもとに,脱細胞化技術を用いて構築した再生肺の左片肺移植は実現可能であることを示した.脱細胞化スキャフォールドを左片肺移植した場合には肺出血で死亡に至ったことを考えると,レシピエント由来の自家細胞で血管を再細胞化することでレシピエント由来の血流に耐えうる再生肺が構築できたと考えることができる.しかしながら再生肺は嚢胞性変化や二酸化炭素ガス交換能不良といった結果をきたし,臨床応用にはほど遠いことを示唆した.これらの変化は,脱細胞化過程におけるエラスチン喪失が一因と考えられた.

今後の肺再生研究を行う上で次の2点が重要と考えられた.1つはエラスチンをはじめとする細胞外マトリックスタンパクの保持ができるような脱細胞化の実現である.我々の用いたドデシル硫酸ナトリウムならびにTritonX-100以外の手法も模索する必要がある.2つ目は細胞についての検討である.今回我々が使用した気道上皮細胞ならびに血管内皮細胞だけで本当に肺再生が実現できるのか,細胞の質ならびに量の面から今後検討すべき余地は大いにある.

本研究は肺再生研究の課題を提示し,大きな礎になると考える.

この論文で使われている画像

参考文献

1. Adeloye D, Chua S, Lee C, Basquill C, Papana A, Theodoratou E, Nair H, Gasevic D, Sridhar D, Campbell H, Chan KY, Sheikh A, Rudan I; Global Health Epidemiology Reference Group (GHERG). Global and regional estimates of COPD prevalence: Systematic review and meta-analysis. J Glob Health, 5, 020415 (2015).

2. Murphy SL, Xu J, Kochanek KD, Curtin SC, Arias E. Natl Vital Stat Rep, 66, 1-75 (2017).

3. Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, Brozek JL, Collard HR, Cunningham W, Homma S, Johkoh T, Martinez FJ, Myers J, Protzko SL, Richeldi L, Rind D, Selman M, Theodore A, Wells AU, Hoogsteden H, Schünemann HJ; American Thoracic Society; European Respiratory society; Japanese Respiratory Society; Latin American Thoracic Association. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med, 192, e3-19 (2015).

4. Iwai K, Mori T, Yamada N, Yamaguchi M, Hosoda Y. Idiopathic pulmonary fibrosis. Epidemiologic approaches to occupational exposure. Am J Respir Crit Care Med, 150, 670-5 (1994).

5. Coultas DB, Zumwalt RE, Black WC, Sobonya RE. The epidemiology of interstitial lung diseases. Am J Respir Crit Care Med, 150, 967-72 (1994).

6. Karakatsani A, Papakosta D, Rapti A, Antoniou KM, Dimadi M, Markopoulou A, Latsi P, Polychronopoulos V, Birba G, Ch L, Bouros D; Hellenic Interstitial Lung Diseases Group. Epidemiology of interstitial lung diseases in Greece. Respir Med, 103, 1122-9 (2009).

7. Bjoraker JA, Ryu JH, Edwin MK, Myers JL, Tazelaar HD, Schroeder DR, Offord KP. Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 157, 199-203 (1998).

8. Flaherty KR, Toews GB, Travis WD, Colby TV, Kazerooni EA, Gross BH, Jain A, Strawderman RL 3rd, Paine R, Flint A, Lynch JP 3rd, Martinez FJ. Clinical significance of histological classification of idiopathic interstitial pneumonia. Eur Respir J, 19, 275-83 (2002).

9. Nicholson AG, Colby TV, du Bois RM, Hansell DM, Wells AU. The prognostic significance of the histologic pattern of interstitial pneumonia in patients presenting with the clinical entity of cryptogenic fibrosing alveolitis. Am J Respir Crit Care Med, 162, 2213-7 (2000).

10. Rudd RM, Prescott RJ, Chalmers JC, Johnston ID; Fibrosing Alveolitis Subcommittee of the Research Committee of the British Thoracic Society. British Thoracic Society Study on cryptogenic fibrosing alveolitis: Response to treatment and survival. Thorax, 62, 62-6 (2007).

11. King TE Jr, Schwarz MI, Brown K, Tooze JA, Colby TV, Waldron JA Jr, Flint A, Thurlbeck W, Cherniack RM. Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med, 164, 1025-32 (2001).

12. Raghu G. Idiopathic pulmonary fibrosis. A rational clinical approach. Chest, 92, 148-54 (1987).

13. King TE Jr, Behr J, Brown KK, du Bois RM, Lancaster L, de Andrade JA, Stähler G, Leconte I, Roux S, Raghu G. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 177, 75-81 (2008).

14. Luppi F, Cerri S, Taddei S, Ferrara G, Cottin V. Acute exacerbation of idiopathic pulmonary fibrosis: a clinical review. Intern Emerg Med, 10, 401-11 (2015).

15. Azuma A, Nukiwa T, Tsuboi E, Suga M, Abe S, Nakata K, Taguchi Y, Nagai S, Itoh H, Ohi M, Sato A, Kudoh S. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med, 171, 1040-7 (2005).

16. Yanagiya M, Sato M, Kawashima S, Kuwano H, Nagayama K, Nitadori J, Anraku M, Nakajima J. Flat Chest of Pleuroparenchymal Fibroelastosis Reversed by Lung Transplantation. Ann Thorac Surg, 102, e347-9 (2016).

17. Reddy TL, Tominaga M, Hansell DM, von der Thusen J, Rassl D, Parfrey H, Guy S, Twentyman O, Rice A, Maher TM, Renzoni EA, Wells AU, Nicholson AG. Pleuroparenchymal fibroelastosis: a spectrum of histopathological and imaging phenotypes. Eur Respir J, 40, 377-85 (2012).

18. Munshi L, Keshavjee S, Cypel M. Donor management and lung preservation for lung transplantation. Lancet Respir Med, 1, 318-28 (2013).

19. Nathan SD. The future of lung transplantation. Chest, 147, 309-316 (2015).

20. Hardy JD, Webb WR, Dalton ML Jr, Walker GR Jr. LUNG HOMOTRANSPLANTATION IN MAN. JAMA, 186, 1065-74 (1963).

21. Veith FJ, Kamholz SL, Mollenkopf FP, Montefusco CM. Lung transplantation 1983. Transplantation, 35, 271-8 (1983).

22. Hardy JD. The first lung transplant in man (1963) and the first heart transplant in man (1964). Transplant Proc, 31, 25-9 (1999).

23. Bhorade SM, Stern E. Immunosuppression for lung transplantation. Proc Am Thorac Soc, 6, 47-53 (2009).

24. Reitz BA, Wallwork JL, Hunt SA, Pennock JL, Billingham ME, Oyer PE, Stinson EB, Shumway NE. Heart-lung transplantation: successful therapy for patients with pulmonary vascular disease. N Engl J Med, 306, 557-64 (1982).

25. Toronto Lung Transplant Group. Unilateral lung transplantation for pulmonary fibrosis. N Engl J Med, 314, 1140-5 (1986).

26. Patterson GA, Todd TR, Cooper JD, Pearson FG, Winton TL, Maurer J. Airway complications after double lung transplantation. Toronto Lung Transplant Group. J Thorac Cardiovasc Surg, 99, 14-20 (1990).

27. Pasque MK, Cooper JD, Kaiser LR, Haydock DA, Triantafillou A, Trulock EP. Improved technique for bilateral lung transplantation: rationale and initial clinical experience. Ann Thorac Surg, 49, 785-91 (1990).

28. Kistler KD, Nalysnyk L, Rotella P, Esser D. Lung transplantation in idiopathic pulmonary fibrosis: a systematic review of the literature. BMC Pulm Med, 14, 139 (2014).

29. Christie JD, Edwards LB, Kucheryavaya AY, Aurora P, Dobbels F, Kirk R, Rahmel AO, Stehlik J, Hertz MI. The Registry of the International Society for Heart and Lung Transplantation: twenty-seventh official adult lung and heart-lung transplant report--2010. J Heart Lung Transplant, 29, 1104-18 (2010).

30. Sato M, Waddell TK, Wagnetz U, Roberts HC, Hwang DM, Haroon A, Wagnetz D, Chaparro C, Singer LG, Hutcheon MA, Keshavjee S. Restrictive allograft syndrome (RAS): a novel form of chronic lung allograft dysfunction. J Heart Lung Transplant, 30, 735-42 (2011).

31. Higo H, Kurosaki T, Ichihara E, Kubo T, Miyoshi K, Otani S, Sugimoto S, Yamane M, Miyahara N, Kiura K, Miyoshi S, Oto T. Clinical characteristics of Japanese candidates for lung transplant for interstitial lung disease and risk factors for early death while on the waiting list. Respir Investig, 55, 264-269 (2017).

32. Japan Organ Transplant Network [Internet], Tokyo. Available from: https://www.jotnw.or.jp/index.html [Accessed 31 October 2016].

33. Valapour M, Skeans MA, Smith JM, Edwards LB, Cherikh WS Uccellini K, Israni AK, Snyder JJ, Kasiske BL. OPTN/SRTR 2015 Annual Data Report: Lung. Am J Transplant. 17 Suppl 1, 357-424 (2017).

34. Date H. Current status and problems of lung transplantation in Japan. J Thorac Dis, 8(Suppl 8), S631-6 (2016).

35. Starnes VA, Lewiston NJ, Luikart H, Theodore J, Stinson EB, Shumway NE. Current trends in lung transplantation. Lobar transplantation and expanded use of single lungs. J Thorac Cardiovasc Surg, 104, 1060-5 (1992).

36. Japan Organ Transplant Network [Internet], Tokyo. Available from: http://www.asas.or.jp/jst/general/qa/lungs/qa3.php [Accessed 20 October 2019].

37. Date H, Sato M, Aoyama A, Yamada T, Mizota T, Kinoshita H, Handa T, Tanizawa K, Chin K, Minakata K, Chen F. Living-donor lobar lung transplantation provides similar survival to cadaveric lung transplantation even for very ill patients†. Eur J Cardiothorac Surg, 47, 967-72 (2015).

38. Date H, Yamane M, Toyooka S, Okazaki M, Aoe M, Sano Y. Current status and potential of living-donor lobar lung transplantation. Front Biosci, 13, 1433-9 (2008).

39. Chen F, Yamada T, Sato M, Aoyama A, Takahagi A, Menju T, Sato T, Sonobe M, Omasa M, Date H. Postoperative pulmonary function and complications in living-donor lobectomy. J Heart Lung Transplant, 34, 1089-94 (2015).

40. Sato M, Okada Y, Oto T, Minami M, Shiraishi T, Nagayasu T, Yoshino I, Chida M, Okumura M, Date H, Miyoshi S, Kondo T; Japanese Society of Lung and Heart–Lung Transplantation. Registry of the Japanese Society of Lung and Heart-Lung Transplantation: official Japanese lung transplantation report, 2014. Gen Thorac Cardiovasc Surg, 62, 594-601 (2014).

41. Magruder JT, Crawford TC, Grimm JC, Kim B, Shah AS, Bush EL, Higgins RS, Merlo CA. Risk Factors for De Novo Malignancy Following Lung Transplantation. Am J Transplant, 17, 227-238 (2017).

42. Song JJ, Ott HC. Organ engineering based on decellularized matrix scaffolds. Trends Mol Med, 17, 424-32 (2011).

43. Moser PT, Ott HC. Recellularization of organs: what is the future for solid organ transplantation? Curr Opin Organ Transplant, 19, 603-9 (2014).

44. Rana D, Zreiqat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M. Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med, 11, 942-965 (2017).

45. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials, 27, 3675-83 (2006).

46. Doi R, Tsuchiya T, Mitsutake N, Nishimura S, Matsuu-Matsuyama M, Nakazawa Y, Ogi T, Akita S, Yukawa H, Baba Y, Yamasaki N, Matsumoto K, Miyazaki T, Kamohara R, Hatachi G, Sengyoku H, Watanabe H, Obata T, Niklason LE, Nagayasu T. Transplantation of bioengineered rat lungs recellularized with endothelial and adipose-derived stromal cells. Sci Rep, 7, 8447 (2017).

47. Auger FA, Gibot L, Lacroix D. The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng, 15, 177-200 (2013).

48. Booth AJ, Hadley R, Cornett AM, Dreffs AA, Matthes SA, Tsui JL, Weiss K, Horowitz JC, Fiore VF, Barker TH, Moore BB, Martinez FJ, Niklason LE, White ES. Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation. Am J Respir Crit Care Med. 186, 866-76 (2012).

49. Keane TJ, Londono R, Turner NJ, Badylak SF. Consequences of ineffective decellularization of biologic scaffolds on the host response. Biomaterials, 33, 1771-81 (2012).

50. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med, 14, 213-21 (2008).

51. Lin P, Chan WC, Badylak SF, Bhatia SN. Assessing porcine liver-derived biomatrix for hepatic tissue engineering. Tissue Eng, 10, 1046-53 (2004).

52. Park KM, Hussein KH, Hong SH, Ahn C, Yang SR, Park SM, Kweon OK, Kim BM, Woo HM. Decellularized Liver Extracellular Matrix as Promising Tools for Transplantable Bioengineered Liver Promotes Hepatic Lineage Commitments of Induced Pluripotent Stem Cells. Tissue Eng Part A, 22, 449-60 (2016).

53. Aebischer P, Ip TK, Panol G, Galletti PM. The bioartificial kidney: progress towards an ultrafiltration device with renal epithelial cells processing. Life Support Syst, 5, 159-68 (1987).

54. Humes HD, Buffington DA, MacKay SM, Funke AJ, Weitzel WF. Replacement of renal function in uremic animals with a tissue-engineered kidney. Nat Biotechnol, 17, 451-5 (1999).

55. Humes HD, Weitzel WF, Fissell WH. Renal cell therapy in the treatment of patients with acute and chronic renal failure. Blood Purif, 22, 60-72 (2004).

56. Nakayama KH, Batchelder CA, Lee CI, Tarantal AF. Renal tissue engineering with decellularized rhesus monkey kidneys: age-related differences. Tissue Eng Part A, 17, 2891-901 (2011).

57. Conrad C, Schuetz C, Clippinger B, Vacanti JP, Markmann JF, Ott HC. Bio-engineered endocrine pancreas based on decellularized pancreatic matrix and mesenchymal stem cell/islet cell coculture. Journal of the American College of Surgeons, 211, S62 (2010).

58. Goh SK, Bertera S, Olsen P, Candiello JE, Halfter W, Uechi G, Balasubramani M, Johnson SA, Sicari BM, Kollar E, Badylak SF, Banerjee I. Perfusion-decellularized pancreas as a natural 3D scaffold for pancreatic tissue and whole organ engineering. Biomaterials, 34, 6760-72 (2013).

59. Hashemi J, Pasalar P, Soleimani M, Arefian E, Khorramirouz R, Akbarzadeh A, Ghorbani F, Enderami SE, Kajbafzadeh AM. Decellularized Pancreas Matrix Scaffolds for Tissue Engineering Using Ductal or Arterial Catheterization. Cells Tissues Organs, 205, 72-84 (2018).

60. Mirmalek-Sani SH, Orlando G, McQuilling JP, Pareta R, Mack DL, Salvatori M, Farney AC, Stratta RJ, Atala A, Opara EC, Soker S. Porcine pancreas extracellular matrix as a platform for endocrine pancreas bioengineering. Biomaterials, 34, 5488-95 (2013).

61. Kitano K, Schwartz DM, Zhou H, Gilpin SE, Wojtkiewicz GR, Ren X, Sommer CA, Capilla AV, Mathisen DJ, Goldstein AM, Mostoslavsky G, Ott HC. Bioengineering of functional human induced pluripotent stem cell-derived intestinal grafts. Nat Commun, 8, 765 (2017).

62. Clough A, Ball J, Smith GS, Leibman S. Porcine small intestine submucosa matrix (Surgisis) for esophageal perforation. Ann Thorac Surg, 91, e15-6 (2011).

63. Syed O, Walters NJ, Day RM, Kim HW, Knowles JC. Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomater, 10, 5043-5054 (2014).

64. Ott HC, Clippinger B, Conrad C, Schuetz C, Pomerantseva I, Ikonomou L, Kotton D, Vacanti JP. Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med, 16, 927-33 (2010).

65. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-engineered lungs for in vivo implantation. Science, 329, 538-41 (2010).

66. Song JJ, Kim SS, Liu Z, Madsen JC, Mathisen DJ, Vacanti JP, Ott HC. Enhanced in vivo function of bioartificial lungs in rats. Ann Thorac Surg, 92, 998-1005 (2011).

67. Zhou H, Kitano K, Ren X, Rajab TK, Wu M, Gilpin SE, Wu T, Baugh L, Black LD, Mathisen DJ, Ott HC. Bioengineering Human Lung Grafts on Porcine Matrix. Ann Surg, 267, 590-598 (2018).

68. Nichols JE, La Francesca S, Niles JA, Vega SP, Argueta LB, Frank L, Christiani DC, Pyles RB, Himes BE, Zhang R, Li S, Sakamoto J, Rhudy J, Hendricks G, Begarani F, Liu X, Patrikeev I, Pal R, Usheva E, Vargas G, Miller A, Woodson L, Wacher A, Grimaldo M, Weaver D, Mlcak R, Cortiella J. Production and transplantation of bioengineered lung into a large-animal model. Sci Transl Med, 10, pii: eaao3926 (2018).

69. Petersen TH, Calle EA, Colehour MB, Niklason LE. Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs, 195, 222-31 (2012).

70. Tebyanian H, Karami A, Motavallian E, Aslani J, Samadikuchaksaraei A, Arjmand B, Nourani MR. A Comparative Study of Rat Lung Decellularization by Chemical Detergents for Lung Tissue Engineering. Open Access Maced J Med Sci, 5, 859-865 (2017).

71. Bonvillain RW, Scarritt ME, Pashos NC, Mayeux JP, Meshberger CL, Betancourt AM, Sullivan DE, Bunnell BA. Nonhuman primate lung decellularization and recellularization using a specialized large-organ bioreactor. J. Vis. Exp, 82: e50825 (2013).

72. Weymann A, Patil NP, Sabashnikov A, Korkmaz S, Li S, Soos P, Ishtok R, Chaimow N, Pätzold I, Czerny N, Schmack B, Popov AF, Simon AR, Karck M, Szabo G. Perfusion-decellularization of porcine lung and trachea for respiratory bioengineering. Artif. Organs, 39, 1024-32 (2015).

73. Zuo W, Zhang T, Wu DZ, Guan SP, Liew AA, Yamamoto Y, Wang X, Lim SJ, Vincent M, Lessard M, Crum CP, Xian W, McKeon F. p63(+)Krt5(+) distal airway stem cells are essential for lung regeneration. Nature, 517, 616-20 (2015).

74. Alphonse RS, Vadivel A, Zhong S, McConaghy S, Ohls R, Yoder MC, Thébaud B. The isolation and culture of endothelial colony-forming cells from human and rat lungs. Nat Protoc, 10, 1697-708 (2015).

75. Wang J, Niu N, Xu S, Jin ZG. A simple protocol for isolating mouse lung endothelial cells. Sci Rep, 9, 1458 (2019).

76.Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant, 48, 452-8 (2013).

77. Yanagiya M, Kitano K, Yotsumoto T, Takai D, Asahina H, Nagayama K, Nakajima J. Effect of normal saline flush injection into a bronchus on lung decellularization. J Thorac Dis, 11, 5321-5327 (2019).

78. Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O. The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J, 50, 1601805 (2017).

79. Boasquevisque CH, Yildirim E, Waddel TK, Keshavjee S. Surgical techniques: lung transplant and lung volume reduction. Proc Am Thorac Soc, 6, 66–78 (2009).

80. Iskender I, Sakamoto J, Nakajima D, Lin H, Chen M, Kim H, Guan Z, Del Sorbo L, Hwang D, Waddell TK, Cypel M, Keshavjee S, Liu M. Human α1-antitrypsin improves early post-transplant lung function: Pre-clinical studies in a pig lung transplant model. J Heart Lung Transplant, 35, 913-921 (2016).

81. Ikeda M, Bando T, Yamada T, Sato M, Menjyu T, Aoyama A, Sato T, Chen F, Sonobe M, Omasa M, Date H. Clinical application of ET-Kyoto solution for lung transplantation. Surg Today, 45, 439–43 (2015).

82. Mithieux SM, Weiss AS. Elastin. Adv Protein Chem, 70, 437–61 (2005).

83. Dejima H, Takahashi Y, Hato T, Seto K, Mizuno T, Kuroda H, Sakakura N, Kawamura M, Sakao Y. Mediastinal pulmonary artery is associated with greater artery diameter and lingular division volume. Sci Rep, 7, 1273 (2017).

84.Gupta N, Vassallo R, Wikenheiser-Brokamp KA, McCormack FX. Diffuse Cystic Lung Disease. Part II. Am J Respir Crit Care Med, 192, 17-29 (2015).

85. Stockley RA. Neutrophils and protease/antiprotease imbalance. Am J Respir Crit Care Med, 160, S49–52 (1999).

86. Steagall WK, Glasgow CG, Hathaway OM, Avila NA, Taveira-Dasilva AM, Rabel A, Stylianou MP, Lin JP, Chen X, Moss J. Genetic and morphologic determinants of pneumothorax in lymphangioleiomyomatosis. Am J Physiol Lung Cell Mol Physiol, 293, L800–8 (2007).

87. Jiang Y, Luo Y, Tang Y, Moats R, Warburton D, Zhou S, Lou J, Pryhuber GS, Shi W, Wang LL. Alteration of cystic airway mesenchyme in congenital pulmonary airway malformation. Sci Rep, 9, 5296 (2019).

88. Wallis JM, Borg ZD, Daly AB, Deng B, Ballif BA, Allen GB, Jaworski DM, Weiss DJ. Comparative assessment of detergent-based protocols for mouse lung de-cellularization and re-cellularization. Tissue Eng Part C Methods, 18: 420–32 (2012).

89. Yamamoto Y, Gotoh S, Korogi Y, Seki M, Konishi S, Ikeo S, Sone N, Nagasaki T, Matsumoto H, Muro S, Ito I, Hirai T, Kohno T, Suzuki Y, Mishima M. Long-term expansion of alveolar stem cells derived from human iPS cells in organoids. Nat Methods, 14, 1097–106 (2017).

90. Liu Q, Liu K, Cui G, Huang X, Yao S, Guo W, Qin Z, Li Y, Yang R, Pu W, Zhang L, He L, Zhao H, Yu W, Tang M, Tian X, Cai D, Nie Y, Hu S, Ren T, Qiao Z, Huang H, Zeng YA, Jing N, Peng G, Ji H, Zhou B. Lung regeneration by multipotent stem cells residing at the bronchioalveolar-duct junction. Nat Genet, 51, 728–38 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る