リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mitochondrial Dysfunction in Pulmonary Hypertension」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mitochondrial Dysfunction in Pulmonary Hypertension

Ryanto, Gusty R. Suraya, Ratoe Nagano, Tatsuya 神戸大学

2023.02

概要

Pulmonary hypertension (PH) is a multi-etiological condition with a similar hemodynamic clinical sign and end result of right heart failure. Although its causes vary, a similar link across all the classifications is the presence of mitochondrial dysfunction. Mitochondria, as the powerhouse of the cells, hold a number of vital roles in maintaining normal cellular homeostasis, including the pulmonary vascular cells. As such, any disturbance in the normal functions of mitochondria could lead to major pathological consequences. The Warburg effect has been established as a major finding in PH conditions, but other mitochondria-related metabolic and oxidative stress factors have also been reported, making important contributions to the progression of pulmonary vascular remodeling that is commonly found in PH pathophysiology. In this review, we will discuss the role of the mitochondria in maintaining a normal vasculature, how it could be altered during pulmonary vascular remodeling, and the therapeutic options available that can treat its dysfunction.

この論文で使われている画像

参考文献

1.

2.

3.

Galie, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti,

M.; et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the

Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory

Society (ERS): Endor. Eur. Respir. J. 2015, 46, 903–975. [CrossRef] [PubMed]

Humbert, M.; Kovacs, G.; Hoeper, M.M.; Badagliacca, R.; Berger, R.M.F.; Brida, M.; Carlsen, J.; Coats, A.J.S.; Escribano-Subias, P.;

Ferrari, P.; et al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J. 2022, 43,

3618–3731. [CrossRef] [PubMed]

Marshall, J.D.; Bazan, I.; Zhang, Y.; Fares, W.H.; Lee, P.J. Mitochondrial dysfunction and pulmonary hypertension: Cause, effect,

or both. Am. J. Physiol. Cell. Mol. Physiol. 2018, 314, L782–L796. [CrossRef]

Antioxidants 2023, 12, 372

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

10 of 13

Liang, S.; Yegambaram, M.; Wang, T.; Wang, J.; Black, S.M.; Tang, H. Mitochondrial metabolism, redox, and calcium homeostasis

in pulmonary arterial hypertension. Biomedicines 2022, 10, 341. [CrossRef]

Simonneau, G.; Montani, D.; Celermajer, D.S.; Denton, C.P.; Gatzoulis, M.A.; Krowka, M.; Williams, P.G.; Souza, R. Haemodynamic

definitions and updated clinical classification of pulmonary hypertension. Eur. Respir. J. 2019, 53, 1801913. [CrossRef]

Guignabert, C.; Tu, L.; Girerd, B.; Ricard, N.; Huertas, A.; Montani, D.; Humbert, M. New molecular targets of pulmonary vascular

remodeling in pulmonary arterial hypertension: Importance of endothelial communication. Chest 2015, 147, 529–537. [CrossRef]

Tobal, R.; Potjewijd, J.; van Empel, V.P.M.; Ysermans, R.; Schurgers, L.J.; Reutelingsperger, C.P.; Damoiseaux, J.G.M.C.; van

Paassen, P. Vascular remodeling in pulmonary arterial hypertension: The potential involvement of innate and adaptive immunity.

Front. Med. 2021, 8, 2732. [CrossRef]

Cussac, L.-A.; Cardouat, G.; Tiruchellvam Pillai, N.; Campagnac, M.; Robillard, P.; Montillaud, A.; Guibert, C.; Gailly, P.; Marthan,

R.; Quignard, J.-F.; et al. TRPV4 channel mediates adventitial fibroblast activation and adventitial remodeling in pulmonary

hypertension. Am. J. Physiol. Cell. Mol. Physiol. 2020, 318, L135–L146. [CrossRef]

Freund-Michel, V.; Khoyrattee, N.; Savineau, J.-P.; Muller, B.; Guibert, C. Mitochondria: Roles in pulmonary hypertension. Int. J.

Biochem. Cell Biol. 2014, 55, 93–97. [CrossRef]

Suliman, H.B.; Nozik-Grayck, E. Mitochondrial dysfunction: Metabolic drivers of pulmonary hypertension. Antioxid. Redox

Signal. 2019, 31, 843–857. [CrossRef]

Dromparis, P.; Sutendra, G.; Michelakis, E.D. The role of mitochondria in pulmonary vascular remodeling. J. Mol. Med. 2010, 88,

1003–1010. [CrossRef] [PubMed]

Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2020, 21, 85–100. [CrossRef]

[PubMed]

Peng, H.; Xiao, Y.; Deng, X.; Luo, J.; Hong, C.; Qin, X. The Warburg effect: A new story in pulmonary arterial hypertension. Clin.

Chim. Acta 2016, 461, 53–58. [CrossRef]

Mick, E.; Titov, D.V.; Skinner, O.S.; Sharma, R.; Jourdain, A.A.; Mootha, V.K. Distinct mitochondrial defects trigger the integrated

stress response depending on the metabolic state of the cell. eLife 2020, 9, e49178. [CrossRef]

Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11,

102. [CrossRef]

Culley, M.K.; Chan, S.Y. Mitochondrial metabolism in pulmonary hypertension: Beyond mountains there are mountains. J. Clin.

Invest. 2018, 128, 3704–3715. [CrossRef]

Ryan, J.; Dasgupta, A.; Huston, J.; Chen, K.-H.; Archer, S.L. Mitochondrial dynamics in pulmonary arterial hypertension. J. Mol.

Med. 2015, 93, 229–242. [CrossRef]

Gureev, A.P.; Shaforostova, E.A.; Popov, V.N. Regulation of mitochondrial biogenesis as a way for active longevity: Interaction

between the Nrf2 and PGC-1α signaling pathways. Front. Genet. 2019, 10, 435. [CrossRef]

Brenmoehl, J.; Hoeflich, A. Dual control of mitochondrial biogenesis by sirtuin 1 and sirtuin 3. Mitochondrion 2013, 13, 755–761.

[CrossRef]

Nisoli, E.; Carruba, M.O. Nitric oxide and mitochondrial biogenesis. J. Cell Sci. 2006, 119, 2855–2862. [CrossRef]

Yeligar, S.M.; Kang, B.-Y.; Bijli, K.M.; Kleinhenz, J.M.; Murphy, T.C.; Torres, G.; San Martin, A.; Sutliff, R.L.; Hart, C.M. PPARγ

Regulates mitochondrial structure and function and human pulmonary artery smooth muscle cell proliferation. Am. J. Respir. Cell

Mol. Biol. 2018, 58, 648–657. [CrossRef]

Sureshbabu, A.; Bhandari, V. Targeting mitochondrial dysfunction in lung diseases: Emphasis on mitophagy. Front. Physiol. 2013,

4, 384. [CrossRef] [PubMed]

Durcan, T.M.; Fon, E.A. The three ‘P’s of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev. 2015, 29,

989–999. [CrossRef] [PubMed]

Losón, O.C.; Song, Z.; Chen, H.; Chan, D.C. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol.

Biol. Cell 2013, 24, 659–667. [CrossRef] [PubMed]

Marsboom, G.; Toth, P.T.; Ryan, J.J.; Hong, Z.; Wu, X.; Fang, Y.-H.; Thenappan, T.; Piao, L.; Zhang, H.J.; Pogoriler, J.; et al.

Dynamin-related protein 1–mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells

and offers a novel therapeutic target in pulmonary hypertension. Circ. Res. 2012, 110, 1484–1497. [CrossRef]

Dasgupta, A.; Chen, K.; Lima, P.D.A.; Mewburn, J.; Wu, D.; Al-Qazazi, R.; Jones, O.; Tian, L.; Potus, F.; Bonnet, S.; et al. PINK1induced phosphorylation of mitofusin 2 at serine 442 causes its proteasomal degradation and promotes cell proliferation in lung

cancer and pulmonary arterial hypertension. FASEB J. 2021, 35, e21771. [CrossRef]

Chan, S.Y.; Rubin, L.J. Metabolic dysfunction in pulmonary hypertension: From basic science to clinical practice. Eur. Respir. Rev.

2017, 26, 170094. [CrossRef]

Gillespie, M.N.; Al-Mehdi, A.-B.; McMurtry, I.F. Mitochondria in hypoxic pulmonary vasoconstriction. Am. J. Respir. Crit. Care

Med. 2013, 187, 338–340. [CrossRef]

He, S.; Zhu, T.; Fang, Z. The role and regulation of pulmonary artery smooth muscle cells in pulmonary hypertension. Int. J.

Hypertens. 2020, 2020, 1–10. [CrossRef]

Li, M.; Riddle, S.; Zhang, H.; D’Alessandro, A.; Flockton, A.; Serkova, N.J.; Hansen, K.C.; Moldovan, R.; McKeon, B.A.; Frid, M.;

et al. Metabolic reprogramming regulates the proliferative and inflammatory phenotype of adventitial fibroblasts in pulmonary

hypertension through the transcriptional corepressor C-terminal binding protein-1. Circulation 2016, 134, 1105–1121. [CrossRef]

Antioxidants 2023, 12, 372

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

11 of 13

Sommer, N.; Theine, F.F.; Pak, O.; Tello, K.; Richter, M.; Gall, H.; Wilhelm, J.; Savai, R.; Weissmann, N.; Seeger, W.; et al.

Mitochondrial respiration in peripheral blood mononuclear cells negatively correlates with disease severity in pulmonary arterial

hypertension. J. Clin. Med. 2022, 11, 4132. [CrossRef] [PubMed]

Lteif, C.; Ataya, A.; Duarte, J.D. Therapeutic challenges and emerging treatment targets for pulmonary hypertension in left heart

disease. J. Am. Heart Assoc. 2021, 10, e020633. [CrossRef] [PubMed]

Adesina, S.E.; Kang, B.-Y.; Bijli, K.M.; Ma, J.; Cheng, J.; Murphy, T.C.; Michael Hart, C.; Sutliff, R.L. Targeting mitochondrial

reactive oxygen species to modulate hypoxia-induced pulmonary hypertension. Free Radic. Biol. Med. 2015, 87, 36–47. [CrossRef]

[PubMed]

Bretón-Romero, R.; Lamas, S. Hydrogen peroxide signaling in vascular endothelial cells. Redox Biol. 2014, 2, 529–534. [CrossRef]

Tuder, R.M. Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res. 2017, 367, 643–649. [CrossRef]

Archer, S.L. Pyruvate kinase and warburg metabolism in pulmonary arterial hypertension. Circulation 2017, 136, 2486–2490.

[CrossRef]

Colon Hidalgo, D.; Elajaili, H.; Suliman, H.; George, M.P.; Delaney, C.; Nozik, E. Metabolism, mitochondrial dysfunction, and

redox homeostasis in pulmonary hypertension. Antioxidants 2022, 11, 428. [CrossRef]

Liu, J.; Wang, W.; Wang, L.; Qi, X.-M.; Sha, Y.-H.; Yang, T. 3-Bromopyruvate alleviates the development of monocrotaline-induced

rat pulmonary arterial hypertension by decreasing aerobic glycolysis, inducing apoptosis, and suppressing inflammation. Chin.

Med. J. 2020, 133, 49–60. [CrossRef]

Stenmark, K.R.; Tuder, R.M.; El Kasmi, K.C. Metabolic reprogramming and inflammation act in concert to control vascular

remodeling in hypoxic pulmonary hypertension. J. Appl. Physiol. 2015, 119, 1164–1172. [CrossRef]

Archer, S.L.; Weir, E.K.; Wilkins, M.R. Basic science of pulmonary arterial hypertension for clinicians. Circulation 2010, 121,

2045–2066. [CrossRef]

Morrell, N.W.; Adnot, S.; Archer, S.L.; Dupuis, J.; Lloyd Jones, P.; MacLean, M.R.; McMurtry, I.F.; Stenmark, K.R.; Thistlethwaite,

P.A.; Weissmann, N.; et al. Cellular and molecular basis of pulmonary arterial hypertension. J. Am. Coll. Cardiol. 2009, 54, S20–S31.

[CrossRef]

Rafikova, O.; Srivastava, A.; Desai, A.A.; Rafikov, R.; Tofovic, S.P. Recurrent inhibition of mitochondrial complex III induces

chronic pulmonary vasoconstriction and glycolytic switch in the rat lung. Respir. Res. 2018, 19, 69. [CrossRef]

Xu, W.; Janocha, A.J.; Erzurum, S.C. Metabolism in pulmonary hypertension. Annu. Rev. Physiol. 2021, 83, 551–576. [CrossRef]

Fijalkowska, I.; Xu, W.; Comhair, S.A.A.; Janocha, A.J.; Mavrakis, L.A.; Krishnamachary, B.; Zhen, L.; Mao, T.; Richter, A.; Erzurum,

S.C.; et al. Hypoxia inducible-factor1α regulates the metabolic shift of pulmonary hypertensive endothelial cells. Am. J. Pathol.

2010, 176, 1130–1138. [CrossRef] [PubMed]

Chen, R.; Yan, J.; Liu, P.; Wang, Z.; Wang, C.; Zhong, W.; Xu, L. The role of nuclear factor of activated T cells in pulmonary arterial

hypertension. Cell Cycle 2017, 16, 508–514. [CrossRef]

DeMarco, V.G. Contribution of oxidative stress to pulmonary arterial hypertension. World J. Cardiol. 2010, 2, 316. [CrossRef]

Xu, D.; Hu, Y.-H.; Gou, X.; Li, F.-Y.; Yang, X.-Y.-C.; Li, Y.-M.; Chen, F. Oxidative stress and antioxidative therapy in pulmonary

arterial hypertension. Molecules 2022, 27, 3724. [CrossRef]

Dorfmüller, P.; Chaumais, M.-C.; Giannakouli, M.; Durand-Gasselin, I.; Raymond, N.; Fadel, E.; Mercier, O.; Charlotte, F.; Montani,

D.; Simonneau, G.; et al. Increased oxidative stress and severe arterial remodeling induced by permanent high-flow challenge in

experimental pulmonary hypertension. Respir. Res. 2011, 12, 119. [CrossRef] [PubMed]

Hoshikawa, Y.; Ono, S.; Suzuki, S.; Tanita, T.; Chida, M.; Song, C.; Noda, M.; Tabata, T.; Voelkel, N.F.; Fujimura, S. Generation

of oxidative stress contributes to the development of pulmonary hypertension induced by hypoxia. J. Appl. Physiol. 2001, 90,

1299–1306. [CrossRef]

Jiang, W.-L.; Han, X.; Zhang, Y.-F.; Xia, Q.-Q.; Zhang, J.-M.; Wang, F. Arctigenin prevents monocrotaline-induced pulmonary

arterial hypertension in rats. RSC Adv. 2019, 9, 552–559. [CrossRef]

Park, W.H. Exogenous H2 O2 induces growth inhibition and cell death of human pulmonary artery smooth muscle cells via

glutathione depletion. Mol. Med. Rep. 2016, 14, 936–942. [CrossRef]

Bonnet, S.; Boucherat, O. The ROS controversy in hypoxic pulmonary hypertension revisited. Eur. Respir. J. 2018, 51, 1800276.

[CrossRef]

Morten, K.J.; Ackrell, B.A.C.; Melov, S. Mitochondrial reactive oxygen species in mice lacking superoxide dismutase 2. J. Biol.

Chem. 2006, 281, 3354–3359. [CrossRef]

Wang, Y.; Yang, J.; Yang, K.; Cang, H.; Huang, X.; Li, H.; Yi, J. The biphasic redox sensing of SENP3 accounts for the HIF-1

transcriptional activity shift by oxidative stress. Acta Pharmacol. Sin. 2012, 33, 953–963. [CrossRef]

Liu, R.; Xu, C.; Zhang, W.; Cao, Y.; Ye, J.; Li, B.; Jia, S.; Weng, L.; Liu, Y.; Liu, L.; et al. FUNDC1-mediated mitophagy and HIF1α

activation drives pulmonary hypertension during hypoxia. Cell Death Dis. 2022, 13, 634. [CrossRef]

Kitagawa, A.; Jacob, C.; Jordan, A.; Waddell, I.; McMurtry, I.F.; Gupte, S.A. Inhibition of glucose-6-phosphate dehydrogenase

activity attenuates right ventricle pressure and hypertrophy elicited by VEGFR inhibitor + hypoxia. J. Pharmacol. Exp. Ther. 2021,

377, 284–292. [CrossRef] [PubMed]

Mprah, R.; Adzika, G.K.; Gyasi, Y.I.; Ndzie Noah, M.L.; Adu-Amankwaah, J.; Adekunle, A.O.; Duah, M.; Wowui, P.I.; Weili, Q.

Glutaminolysis: A driver of vascular and cardiac remodeling in pulmonary arterial hypertension. Front. Cardiovasc. Med. 2021, 8.

[CrossRef] [PubMed]

Antioxidants 2023, 12, 372

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

12 of 13

Niihori, M.; Eccles, C.A.; Kurdyukov, S.; Zemskova, M.; Varghese, M.V.; Stepanova, A.A.; Galkin, A.; Rafikov, R.; Rafikova, O.

Rats with a human mutation of NFU1 develop pulmonary hypertension. Am. J. Respir. Cell Mol. Biol. 2020, 62, 231–242. [CrossRef]

[PubMed]

Babitt, J.L. Ironing out pulmonary arterial hypertension. Proc. Natl. Acad. Sci. USA 2019, 116, 12604–12606. [CrossRef]

Talati, M.; Hemnes, A. Fatty acid metabolism in pulmonary arterial hypertension: Role in right ventricular dysfunction and

hypertrophy. Pulm. Circ. 2015, 5, 269–278. [CrossRef]

Feng, W.; Wang, J.; Yan, X.; Zhang, Q.; Chai, L.; Wang, Q.; Shi, W.; Chen, Y.; Liu, J.; Qu, Z.; et al. ERK/Drp1-dependent

mitochondrial fission contributes to HMGB1-induced autophagy in pulmonary arterial hypertension. Cell Prolif. 2021, 54, e13048.

[CrossRef]

Ryan, J.J.; Marsboom, G.; Fang, Y.-H.; Toth, P.T.; Morrow, E.; Luo, N.; Piao, L.; Hong, Z.; Ericson, K.; Zhang, H.J.; et al. PGC1αmediated mitofusin-2 deficiency in female rats and humans with pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.

2013, 187, 865–878. [CrossRef]

Omura, J.; Satoh, K.; Kikuchi, N.; Satoh, T.; Kurosawa, R.; Nogi, M.; Ohtsuki, T.; Al-Mamun, M.E.; Siddique, M.A.H.; Yaoita, N.;

et al. ADAMTS8 promotes the development of pulmonary arterial hypertension and right ventricular failure. Circ. Res. 2019, 125,

884–906. [CrossRef]

Brüne, B.; Dehne, N.; Grossmann, N.; Jung, M.; Namgaladze, D.; Schmid, T.; von Knethen, A.; Weigert, A. Redox control of

inflammation in macrophages. Antioxid. Redox Signal. 2013, 19, 595–637. [CrossRef]

Florentin, J.; Coppin, E.; Vasamsetti, S.B.; Zhao, J.; Tai, Y.-Y.; Tang, Y.; Zhang, Y.; Watson, A.; Sembrat, J.; Rojas, M.; et al.

Inflammatory macrophage expansion in pulmonary hypertension depends upon mobilization of blood-borne monocytes. J.

Immunol. 2018, 200, 3612–3625. [CrossRef]

Fan, Y.; Hao, Y.; Gao, D.; Gao, L.; Li, G.; Zhang, Z. Phenotype and function of macrophage polarization in monocrotaline-induced

pulmonary arterial hypertension rat model. Physiol. Res. 2021, 70, 213. [CrossRef]

Plecitá-Hlavatá, L.; D’alessandro, A.; El Kasmi, K.; Li, M.; Zhang, H.; Ježek, P.; Stenmark, K.R. Metabolic reprogramming and

redox signaling in pulmonary hypertension. Pulm. Vasc. Redox Signal. Health Dis. 2017, 967, 241–260.

Kojima, H.; Tokunou, T.; Takahara, Y.; Sunagawa, K.; Hirooka, Y.; Ichiki, T.; Tsutsui, H. Hypoxia-inducible factor-1 α deletion in

myeloid lineage attenuates hypoxia-induced pulmonary hypertension. Physiol. Rep. 2019, 7, e14025. [CrossRef]

Stenmark, K.R.; Nozik-Grayck, E.; Gerasimovskaya, E.; Anwar, A.; Li, M.; Riddle, S.; Frid, M. The adventitia: Essential role in

pulmonary vascular remodeling. In Comprehensive Physiology; Wiley: Hoboken, NJ, USA, 2010; pp. 141–161.

El Kasmi, K.C.; Pugliese, S.C.; Riddle, S.R.; Poth, J.M.; Anderson, A.L.; Frid, M.G.; Li, M.; Pullamsetti, S.S.; Savai, R.; Nagel, M.A.;

et al. Adventitial fibroblasts induce a distinct proinflammatory/profibrotic macrophage phenotype in pulmonary hypertension. J.

Immunol. 2014, 193, 597–609. [CrossRef]

Zhang, H.; Wang, D.; Li, M.; Plecitá-Hlavatá, L.; D’Alessandro, A.; Tauber, J.; Riddle, S.; Kumar, S.; Flockton, A.; McKeon, B.A.;

et al. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a

MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/pyruvate kinase muscle axis. Circulation 2017, 136, 2468–2485.

[CrossRef]

Xu, W.; Koeck, T.; Lara, A.R.; Neumann, D.; DiFilippo, F.P.; Koo, M.; Janocha, A.J.; Masri, F.A.; Arroliga, A.C.; Jennings, C.;

et al. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc. Natl. Acad. Sci. USA 2007, 104, 1342–1347.

[CrossRef] [PubMed]

Jernigan, N.L.; Naik, J.S.; Weise-Cross, L.; Detweiler, N.D.; Herbert, L.M.; Yellowhair, T.R.; Resta, T.C. Contribution of reactive

oxygen species to the pathogenesis of pulmonary arterial hypertension. PLoS ONE 2017, 12, e0180455. [CrossRef] [PubMed]

Coskun, F.Y.; Taysı, S.; Kayıkçıoglu,

˘ M. Can serum 8-hydroxy-20 -deoxyguanosine levels reflect the severity of pulmonary arterial

hypertension? Rev. Assoc. Med. Bras. 2021, 67, 1437–1442. [CrossRef]

Wong, C.-M.; Bansal, G.; Pavlickova, L.; Marcocci, L.; Suzuki, Y.J. Reactive oxygen species and antioxidants in pulmonary

hypertension. Antioxid. Redox Signal. 2013, 18, 1789–1796. [CrossRef] [PubMed]

Hurst, L.A.; Dunmore, B.J.; Long, L.; Crosby, A.; Al-Lamki, R.; Deighton, J.; Southwood, M.; Yang, X.; Nikolic, M.Z.; Herrera, B.;

et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling.

Nat. Commun. 2017, 8, 14079. [CrossRef]

Steiner, M.K.; Syrkina, O.L.; Kolliputi, N.; Mark, E.J.; Hales, C.A.; Waxman, A.B. Interleukin-6 Overexpression Induces Pulmonary

Hypertension. Circ. Res. 2009, 104, 236–244. [CrossRef]

Chen, X.; Andresen, B.; Hill, M.; Zhang, J.; Booth, F.; Zhang, C. Role of reactive oxygen species in tumor necrosis factor-alpha

induced endothelial dysfunction. Curr. Hypertens. Rev. 2008, 4, 245–255. [CrossRef] [PubMed]

Dumas, S.J.; Bru-Mercier, G.; Courboulin, A.; Quatredeniers, M.; Rücker-Martin, C.; Antigny, F.; Nakhleh, M.K.; Ranchoux, B.;

Gouadon, E.; Vinhas, M.-C.; et al. NMDA-type glutamate receptor activation promotes vascular remodeling and pulmonary

arterial hypertension. Circulation 2018, 137, 2371–2389. [CrossRef]

Quatredeniers, M.; Mendes-Ferreira, P.; Santos-Ribeiro, D.; Nakhleh, M.K.; Ghigna, M.-R.; Cohen-Kaminsky, S.; Perros, F. Iron

deficiency in pulmonary arterial hypertension: A deep dive into the mechanisms. Cells 2021, 10, 477. [CrossRef]

Mathew, R. Pulmonary hypertension and metabolic syndrome: Possible connection, PPARγ and Caveolin-1. World J. Cardiol.

2014, 6, 692. [CrossRef]

Antioxidants 2023, 12, 372

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

13 of 13

Matsushima, S.; Sadoshima, J. The role of sirtuins in cardiac disease. Am. J. Physiol. Hear. Circ. Physiol. 2015, 309, H1375–H1389.

[CrossRef] [PubMed]

McMurtry, M.S.; Bonnet, S.; Wu, X.; Dyck, J.R.B.; Haromy, A.; Hashimoto, K.; Michelakis, E.D. Dichloroacetate prevents and

reverses pulmonary hypertension by inducing pulmonary artery smooth muscle cell apoptosis. Circ. Res. 2004, 95, 830–840.

[CrossRef] [PubMed]

Guignabert, C.; Tu, L.; Izikki, M.; Dewachter, L.; Zadigue, P.; Humbert, M.; Adnot, S.; Fadel, E.; Eddahibi, S. Dichloroacetate

treatment partially regresses established pulmonary hypertension in mice with SM22α-targeted overexpression of the serotonin

transporter. FASEB J. 2009, 23, 4135–4147. [CrossRef] [PubMed]

Khan, S.S.; Cuttica, M.J.; Beussink-Nelson, L.; Kozyleva, A.; Sanchez, C.; Mkrdichian, H.; Selvaraj, S.; Dematte, J.E.; Lee, D.C.;

Shah, S.J. Effects of ranolazine on exercise capacity, right ventricular indices, and hemodynamic characteristics in pulmonary

arterial hypertension: A pilot study. Pulm. Circ. 2015, 5, 547–556. [CrossRef]

Liu, F.; Yin, L.; Zhang, L.; Liu, W.; Liu, J.; Wang, Y.; Yu, B. Trimetazidine improves right ventricular function by increasing miR-21

expression. Int. J. Mol. Med. 2012, 30, 849–855. [CrossRef]

Prins, K.W.; Thenappan, T.; Weir, E.K.; Kalra, R.; Pritzker, M.; Archer, S.L. Repurposing medications for treatment of pulmonary

arterial hypertension: What’s old is new again. J. Am. Heart Assoc. 2019, 8, e011343. [CrossRef]

Koulmann, N.; Novel-Chaté, V.; Peinnequin, A.; Chapot, R.; Serrurier, B.; Simler, N.; Richard, H.; Ventura-Clapier, R.; Bigard, X.

Cyclosporin a inhibits hypoxia-induced pulmonary hypertension and right ventricle hypertrophy. Am. J. Respir. Crit. Care Med.

2006, 174, 699–705. [CrossRef]

Lee, D.S.; Jung, Y.W. Protective effect of right ventricular mitochondrial damage by cyclosporine a in monocrotaline-induced

pulmonary hypertension. Korean Circ. J. 2018, 48, 1135. [CrossRef]

Zhou, H.; Liu, H.; Porvasnik, S.L.; Terada, N.; Agarwal, A.; Cheng, Y.; Visner, G.A. Heme oxygenase-1 mediates the protective

effects of rapamycin in monocrotaline-induced pulmonary hypertension. Lab. Investig. 2006, 86, 62–71. [CrossRef]

Zhao, Q.; Song, P.; Zou, M.-H. AMPK and pulmonary hypertension: Crossroads between vasoconstriction and vascular

remodeling. Front. Cell Dev. Biol. 2021, 9, 691585. [CrossRef]

Pak, O.; Scheibe, S.; Esfandiary, A.; Gierhardt, M.; Sydykov, A.; Logan, A.; Fysikopoulos, A.; Veit, F.; Hecker, M.; Kroschel, F.; et al.

Impact of the mitochondria-targeted antioxidant MitoQ on hypoxia-induced pulmonary hypertension. Eur. Respir. J. 2018, 51,

1701024. [CrossRef] [PubMed]

Yan, S.; Walker, B.R.; Jernigan, N.L.; Resta, T.C. Contribution of mitochondrial reactive oxygen species to chronic hypoxia-induced

pulmonary hypertension. FASEB J. 2020, 34, 642–653. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る