リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「MAGI-2 orchestrates the localization of backbone proteins in the slit diaphragm of podocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

MAGI-2 orchestrates the localization of backbone proteins in the slit diaphragm of podocytes

Yamada, Hiroyuki 京都大学 DOI:10.14989/doctor.k23096

2021.03.23

概要

ポドサイトのスリット膜は、尿中にタンパクが漏れ出ないように血中タンパクの最終ろ過障壁として働いている。スリット膜の主要な構成分子としては、Nephrinと Neph1 がすでに同定されており、それぞれの局在は CD2AP および ZO-1 などの足場タンパクによって制御されている。一方、Membrane-associated guanylate kinase inverted 2 (MAGI-2)は、足場タンパクとして今まで神経領域で主に研究されてきたが、ポドサイトにおける MAGI-2 の役割は明らかになっていない。そこで本論文では、足場タンパクとして MAGI-2 がスリット膜に対してどのように機能しているか検討した。

まず既報で報告されている先天的ポドサイト特異的 MAGI-2 KO マウスを用いて、スリット膜の構成タンパクである Nephrin と Neph1 の発現を検討した。その結果、MAGI-2 KO マウス群では、Nephrin および Neph1 の足場タンパクである CD2AP や ZO-1 の発現は保たれていたが、Nephrin と Neph1 の発現は有意に低下していた。

次に、Cre-ERT2 システムを用いて後天的ポドサイト特異的 MAGI-2 KO マウスを作成して検討した。その結果、前述の先天的 KO 群と同様に、後天的 KO 群でも蛋白尿および糸球体硬化を認めた。加えて、Nephrin および Neph1 の発現低下についても、後天的 KO 群でも同様に確認された。以上から MAGI-2 は Nephrin と Neph1 に対して足場タンパクとしてスリット膜の構造維持に必須であることがわかった。

そこで、ポドサイトにおける MAGI-2 の足場タンパクとしての機能を詳細に解明するために培養ポドサイトに対してpiggyBac transposon を用いて、培養MAGI-2 強制発現ポドサイトを確立した。この培養 MAGI-2 強制発現ポドサイトに Nephrin を一過性過剰発現させると、Nephrin と MAGI-2 は共に細胞間接着部で共局在した。次に、培養ポドサイトに対して CRISPR-Cas9 を用いて、Neph1 の足場タンパクである内在性 ZO-1 の発現を欠失させ、ZO-1 KO ポドサイトを確立した。ZO-1 KO ポドサイトでは、ZO-1 の発現が確認できないことに加えて、内在性 Neph1 の発現も有意に低下していた。そこで ZO-1 KO ポドサイトに対して、 MAGI-2 を一過性強制発現させた。その結果、ZO-1 の欠失によって低下していた内在性 Neph1 の発現は、MAGI-2 の強制発現によって再度 Control 群と同等まで上昇した。免疫沈降法では、MAGI-2 はそれぞれ異なる PDZ 結合ドメインを通じて、Nephrin および Neph1 と結合していることが確認された。

実際、血液透析へ移行するリスクの高い巣状分節性糸球体硬化症およびIgA 腎症の予後不 良群では、MAGI-2 の発現は有意に低下し、加えてNephrin やNeph1 の局在も変化していた。

以上の結果から、スリット膜の構造維持のためには、MAGI-2 が足場タンパクとして機能することが不可欠であることが示された。今後、尿蛋白を主体とする糸球体疾患に対して、MAGI-2 の発現制御が創薬開発へ繋がると考えられた。

この論文で使われている画像

参考文献

1. Kawachi H, Miyauchi N, Suzuki K, et al. Role of podocyte slit diaphragm as a filtration barrier. Nephrology (Carlton). 2006;11:274–281.

2. Grahammer F, Schell C, Huber TB. The podocyte slit diaphragm—from a thin grey line to a complex signalling hub. Nat Rev Nephrol. 2013;9:587– 598.

3. Brinkkoetter PT, Ising C, Benzing T. The role of the podocyte in albumin filtration. Nat Rev Nephrol. 2013;9:328–336.

4. Butt L, Unnersjö-Jess D, Höhne M, et al. A molecular mechanism explaining albuminuria in kidney disease. Nat Metab. 2020;2:461–474.

5. Grahammer F, Wigge C, Schell C, et al. A flexible, multilayered protein scaffold maintains the slit in between glomerular podocytes. JCI insight. 2016;1:e86177.

6. Fogo AB. Causes and pathogenesis of focal segmental glomerulosclerosis. Nat Rev Nephrol. 2015;11:76–87.

7. Reiser J, Altintas MM. Podocytes. F1000Res. 2016;5:F100.

8. Kestila M, Lenkkeri U, Männikkö M, et al. Positionally cloned gene for a novel glomerular protein—nephrin—is mutated in congenital nephrotic syndrome. Mol Cell. 1998;1:575–582.

9. Donoviel DB, Freed DD, Vogel H, et al. Proteinuria and perinatal lethality in mice lacking NEPH1, a novel protein with homology to NEPHRIN. Mol Cell Biol. 2001;21:4829–4836.

10. Barletta GM, Kovari IA, Verma RK, et al. Nephrin and Neph1 co-localize at the podocyte foot process intercellular junction and form cis hetero- oligomers. J Biol Chem. 2003;278:19266–19271.

11. Santin S, Garcia-Maset R, Ruiz P, et al. Nephrin mutations cause childhood- and adult-onset focal segmental glomerulosclerosis. Kidney Int. 2009;76:1268–1276.

12. Machuca E, Benoit G, Nevo F, et al. Genotype-phenotype correlations in non-Finnish congenital nephrotic syndrome. J Am Soc Nephrol. 2010;21: 1209–1217.

13. Trautmann A, Bodria M, Ozaltin F, et al. Spectrum of steroid-resistant and congenital nephrotic syndrome in children: the PodoNet registry cohort. Clin J Am Soc Nephrol. 2015;10:592–600.

14. Mohanapriya CD, Vettriselvi V, Nammalwar BR, et al. Novel variations in NPHS1 gene in children of South Indian population and its association with primary nephrotic syndrome. J Cell Biochem. 2018;119:10143– 10150.

15. Solanki AK, Widmeier E, Arif E, et al. Mutations in KIRREL1, a slit diaphragm component, cause steroid-resistant nephrotic syndrome. Kidney Int. 2019;96:883–889.

16. Bonomo JA, Ng MC, Palmer ND, et al. Coding variants in nephrin (NPHS1) and susceptibility to nephropathy in African Americans. Clin J Am Soc Nephrol. 2014;9:1434–1440.

17. Zhuo L, Huang L, Yang Z, et al. A comprehensive analysis of NPHS1 gene mutations in patients with sporadic focal segmental glomerulosclerosis. BMC Medl Genet. 2019;20:111.

18. Yoshizawa C, Kobayashi Y, Ikeuchi Y, et al. Congenital nephrotic syndrome with a novel NPHS1 mutation. Pediatr Int. 2016;58:1211–1215.

19. Li GM, Cao Q, Shen Q, et al. Gene mutation analysis in 12 Chinese children with congenital nephrotic syndrome. BMC Nephrol. 2018;19:382.

20. Thi Kim Lien N, Van Dem P, Thu Huong N, et al. The role of p.Ser1105Ser (in NPHS1 gene) and p.Arg548Leu (in PLCE1 gene) with disease status of Vietnamese patients with congenital nephrotic syndrome: benign or pathogenic? Medicina (Kaunas). 2019;55:102.

21. Shih NY, Li J, Cotran R, et al. CD2AP localizes to the slit diaphragm and binds to nephrin via a novel C-terminal domain. Am J Pathol. 2001;159: 2303–2308.

22. Schwarz K, Simons M, Reiser J, et al. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J Clin Invest. 2001;108:1621–1629.

23. Huber TB, Schmidts M, Gerke P, et al. The carboxyl terminus of Neph family members binds to the PDZ domain protein zonula occludens-1. J Biol Chem. 2003;278:13417–13421.

24. Tossidou I, Teng B, Worthmann K, et al. Tyrosine phosphorylation of CD2AP affects stability of the slit diaphragm complex. J Am Soc Nephrol. 2019;30:1220–1237.

25. Yaddanapudi S, Altintas MM, Kistler AD, et al. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J Clin Invest. 2011;121:3965– 3980.

26. Hirao K, Hata Y, Ide N, et al. A novel multiple PDZ domain-containing molecule interacting with N-methyl-D-aspartate receptors and neuronal cell adhesion proteins. J Biol Chem. 1998;273:21105–21110.

27. Lehtonen S, Ryan JJ, Kudlicka K, et al. Cell junction-associated proteins IQGAP1, MAGI-2, CASK, spectrins, and alpha-actinin are components of the nephrin multiprotein complex. Proc Natil Acad Sci U S A. 2005;102: 9814–9819.

28. Empitu MA, Kadariswantiningsih IN, Aizawa M, Asanuma K. MAGI-2 and scaffold proteins in glomerulopathy. Am J Physiol Renal Phys. 2018;315: F1336–F1344.

29. Hammad MM, Dunn HA, Ferguson SSG. MAGI proteins can differentially regulate the signaling pathways of 5-HT2AR by enhancing receptor trafficking and PLC recruitment. Cell Signal. 2018;47:109–121.

30. Ashraf S, Kudo H, Rao J, et al. Mutations in six nephrosis genes delineate a pathogenic pathway amenable to treatment. Nat Commun. 2018;9: 1960.

31. Zhu B, Cao A, Li J, et al. Disruption of MAGI2-RapGEF2-Rap1 signaling contributes to podocyte dysfunction in congenital nephrotic syndrome caused by mutations in MAGI2. Kidney Int. 2019;96:642–655.

32. Shirata N, Ihara KI, Yamamoto-Nonaka K, et al. Glomerulosclerosis Induced by deficiency of membrane-associated guanylate kinase inverted 2 in kidney podocytes. J Am Soc Nephrol. 2017;28:2654–2669.

33. Balbas MD, Burgess MR, Murali R, et al. MAGI-2 scaffold protein is critical for kidney barrier function. Proc Natl Acad Sci U S A. 2014;111:14876–14881.

34. Lefebvre J, Clarkson M, Massa F, et al. Alternatively spliced isoforms of WT1 control podocyte-specific gene expression. Kidney Int. 2015;88:321–331.

35. Bierzynska A, Soderquest K, Dean P, et al. MAGI2 mutations cause congenital nephrotic syndrome. J Am Soc Nephrol. 2017;28:1614–1621.

36. Zuo Z, Shen JX, Pan Y, et al. Weighted gene correlation network analysis (WGCNA) detected loss of MAGI2 (CKD) by podocyte damage promotes chronic kidney disease. Cell Physiol Biochem. 2018;51:244–261.

37. Hirabayashi S, Mori H, Kansaku A, et al. MAGI-1 is a component of the glomerular slit diaphragm that is tightly associated with nephrin. Lab Invest. 2005;85:1528–1543.

38. Weng Z, Shang Y, Ji Z, et al. Structural basis of highly specific interaction between nephrin and MAGI1 in slit diaphragm assembly and signaling. J Am Soc Nephrol. 2018;29:2362–2371.

39. Fogo AB. Animal models of FSGS: lessons for pathogenesis and treatment. Semin Nephrol. 2003;23:161–171.

40. Ihara K, Asanuma K, Fukuda T, et al. MAGI-2 is critical for the formation and maintenance of the glomerular filtration barrier in mouse kidney. Am J Pathol. 2014;184:2699–2708.

41. Yokoi H, Kasahara M, Mukoyama M, et al. Podocyte-specific expression of tamoxifen-inducible Cre recombinase in mice. Nephrol Dial Transplant. 2010;25:2120–2124.

42. Sagar A, Arif E, Solanki AK, et al. Targeting Neph1 and ZO-1 protein- protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function. Sci Rep. 2017;7:12047.

43. Wagner MC, Rhodes G, Wang E, et al. Ischemic injury to kidney induces glomerular podocyte effacement and dissociation of slit diaphragm proteins Neph1 and ZO-1. J Biol Chem. 2008;283:35579–35589.

44. Li HL, Gee P, Ishida K, Hotta A. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system. Methods (San Diego, Calif). 2016;101:27–35.

45. Matsui H, Fujimoto N, Sasakawa N, et al. Delivery of full-length factor VIII using a piggyBac transposon vector to correct a mouse model of hemophilia A. PloS One. 2014;9:e104957.

46. Schwartzman M, Reginensi A, Wong JS, et al. Podocyte-specific deletion of Yes-associated protein causes FSGS and progressive renal failure. J Am Soc Nephrol. 2016;27:216–226.

47. Lin T, Zhang L, Liu S, et al. WWC1 promotes podocyte survival via stabilizing slit diaphragm protein dendrin. Mol Med Rep. 2017;16:8685–8690.

48. Mizdrak M, Vukojevic K, Filipovic N, et al. Expression of DENDRIN in several glomerular diseases and correlation to pathological parameters and renal failure—preliminary study. Diagn Pathol. 2018;13:90.

49. Weins A, Wong JS, Basgen JM, et al. Dendrin ablation prolongs life span by delaying kidney failure. Am J Pathol. 2015;185:2143–2157.

50. Itoh M, Nakadate K, Horibata Y, et al. The structural and functional organization of the podocyte filtration slits is regulated by Tjp1/ZO-1. PloS One. 2014;9:e106621.

51. Sumita K, Sato Y, Iida J, et al. Synaptic scaffolding molecule (S-SCAM) membrane-associated guanylate kinase with inverted organization (MAGI)-2 is associated with cell adhesion molecules at inhibitory synapses in rat hippocampal neurons. J Neurochem. 2007;100:154–166.

52. Arif E, Wagner MC, Johnstone DB, et al. Motor protein Myo1c is a podocyte protein that facilitates the transport of slit diaphragm protein Neph1 to the podocyte membrane. Mol Cell Biol. 2011;31:2134–2150.

53. Kim EY, Chiu YH, Dryer SE. Neph1 regulates steady-state surface expression of Slo1 Ca(2+)-activated K(+) channels: different effects in embryonic neurons and podocytes. Am J Physiol Cell Physiol. 2009;297: C1379–C1388.

参考文献をもっと見る