リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Structural design and evaluation of device performances in Cd-free quantum dot light-emitting diodes for improving carrier injection process and external quantum efficiency of emission」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Structural design and evaluation of device performances in Cd-free quantum dot light-emitting diodes for improving carrier injection process and external quantum efficiency of emission

Mohammad Mostafizur Rahman Biswas 富山大学

2022.03.23

概要

At present, the designing and fabrication of the cadmium (Cd) free quantum dot-light emitting diode is one of the important items for the display industries. Especially, semiconductor quantum dot (QD) is an eye-catching topic for researchers due to its remarkable attributes to apply in different fields. This is because it has excellent exciton generation and quantum confinement properties, which is the prime prerequisite for the fabrication of solid-state devices. In most of cases, the Cd-based quantum dots are rigorously used due to it’s availability and convenient synthesis procedures; however, Cd contains heavy metal substances that are harmful to the environment and health. Therefore, it is highly desired to develop the Cd-free QDs and its’ field of applications. The author shows the plausible effort to fabricate the ZnCuInS/ZnS-based Cd-free quantum dot light-emitting diode (QLED) for flat panel display. During the fabrication, the author has mainly focused on the balanced flow of electrons and holes to generate excitons. The two well-known hetero and homo-structured devices have been fabricated to get the desired level of device outputs. In addition, the device fabrication procedures were divided into three parts - oxide layer formation, spin coating, and thermal evaporation.

The oxide layer formation is one of the prime parts for the inverted structured devices, as it controls the flow of electrons. In this research work, the sputtered ZnO layer is used as an electron transport layer (ETL), where the thickness (t), substrate temperature (Td), and flow of oxygen (O2) gas is controlled to enhance the structural, morphological, and electrical properties. Moreover, the combined ZnO and polyethyleneimine-ethoxylated (PEIE) layer was used to ensure the tunneling flow of carriers. Additionally, the mobility and carrier concentration of the sputtered ZnO films were measured using the Hall measurement technique, which also correlated with the QLED performances. Moreover, the ZnO layers' crystal structure and texture were examined using X-ray diffraction analysis and field emission scanning electron microscopes (FE-SEM).

In study part 1, the non-stoichiometry structure of ZnO was fabricated using the argon (Ar) gas only to ensure the lower series resistance and higher carrier concentration. The non-stoichiometric ZnO layer (t) of 20 to 100 nm was applied to fabricate the QLED device, where the performance of the device is increased up to 60 nm, and then it starts to decrease. This type of phenomenon occurs due to the series resistance (Rs) effect, which increases with the increment of t accordingly. The optimum condition under this study is 60 nm of ZnO layer, which shows the external quantum efficiency (EQE) of 1.02 % and current efficiency (CE) of 1.86 cd/A with the luminance of 1,750 cd/m2.

In study part 2, it is noticed that the as-deposited QLED is showing a moderate level of efficiency. Therefore, the undoped and metallic ZnO film was treated with substrate heating (Td) to enhance the electronic properties as well as the device's performance. The Td was varied from RT to 150℃, whereas the power efficiency of 11.6 lm/W, current efficiency of 14.1 cd/A, and external quantum efficiency (EQE) of 7.5% were achieved at Td of 150℃.

In the hetero-structured device, the thickness (t) and substrate temperature (Td) is optimized to obtain a certain level of performance; however, it is observed that the electron injection rate is comparatively too high to generate balanced excitons.

In study part 3, the HOMO-structured device; especially, the mixed single layer (MSL) based QLED is introduced to resolve this problem. In fact, the mixed single-layer structured device is suitable to enhance the balanced exciton generation. The MSL-QLED is consists of electron-transport, hole-transport, and emission materials in a mixed condition, so it helps to reduce the colloidal properties of QDs. Therefore, after spin coating, the smooth surface of mixed single layer helps to stick with the upper and lower layers of devices. The MSL-QLED has been designed according to the mixing ratio of QDs. The current efficiency of 5.58 cd/A and external quantum efficiency of 2.41% is achieved for the mixing ratio of 40:20:40 at Td of 200℃. In addition, the balanced exciton generation is confirmed from the MSL-QLED characteristics curve also.

From the above discussion, it is observed that the electron injection property is increased with the increment of the t and Td, where the electron mobility is improved from 15.1 cm2/Vs to 23.4 cm2/Vs. Moreover, the non-stoichiometric structure has been introduced for the increment of electron affinity, which has a significant impact on the device performance. Therefore, the optimum condition of the thickness (t), substrate temperature (Td), and modified ZnO property enhance the initial luminance condition (1 cd/m2). Besides, the MSL-QLED has been shown better electron injection properties; therefore, Td of 200℃ is also incorporated and evaluated the enhanced device performances.

In addition, the author postulated that the colloidal quantum dot is not only dependent on the injection of carriers but also on the surface adhering properties to attach with other layers. The optimized sputtered ZnO and proper layer by layer design technique ensure the superior charge injection into QDs, leading to enhance device efficiency.

この論文で使われている画像

参考文献

1) Press release, “IHS Markit Reports Fourth Quarter 2020 Results”, https://investor.ihsmarkit.com/news-releases/news-release-details/ihs-markit-reports- fourth-quarter-2020-results.

2) Website: Uniglobal Inc, “https://uniglobekisco.com/”, silicon valley, update regularly.

3) M. Pope, H. P. Kallmann, A. Chen, P. Gordon, J. Chem. Phys. 36, 2486 (1962).

4) W. D. Lawson, F. Smith and S. A. Young, J. of the Elec. Soc. 11, 108 (1961).

5) M. Pope, H. P Kallmann, A. Chen, P. Gordon, J. Chem. Phys. 36, 2486 (1962).

6) Merck Displays-Important milestones, “The history of LC displays”, https://www.merckgroup.com/en/expertise/displays/solutions/liquid-crystals/history-of- lcd-displays.html

7) Article: Joseph A. Castellano, “The Story of Liquid Crystal Displays and the Creation of an Industry” (World scientific, 2005, Singapore), 2nd ed., p. 316.

8) R. Rossetti, and L. Brus, J. Phys. Chem. 86, 4470 (1982).

9) C. Tang, S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).

10) V. L. Colvin, M. C. Schlamp and A. P. Alivisatos, Lett. Nat. 370, 354 (1994).

11) S. Coe, W. K. Woo, M. Bawendi and V. Bulović, Nature 420, 6917 (2002).

12) J. Zhao, J. Zhang, C. Jiang, J. Bohnenberger, T. Basche and A. Mews, J. Appl. Phys. 96 3206 (2004).

13) S. Coe-Sullivan, W. K. Woo, J. Steckel, M. Bawendi, and V. Bulović, Org. Electron. 4, 123 ( 2005).

14) W. K. Bae, J. Kwak, J. W. Park, K. Char, C. Lee and S. Lee, Adv. Mat. 21, 1 (2009).

15) A. Wang, H. Shen, S. Zang, Q. Lin, H. Wang, L. Qian, J. Niu, L. Song Li, “Bright, efficient, and color-stable violet ZnSe-based QD light-emitting diodes”, Nanoscale. 7, 2951 (2015).

16) Y. Shirasaki, G.J. Supran, M.G. Bawendi, V. Bulović, Nat. Photonics. 7, 13 (2013).

17) H. Y. Kim, Y. J. Park, J. Kim, C. J. Han, J. Lee, Y. Kim, T. Greco, C. Ippen, A. Wedel, B.K. Ju, M.S. Oh, Adv. Funct. Mater. 26, 3454 (2016).

18) C. Ippen, T. Greco and A. Wedel, J. Inf. Disp. 13(2), 91 (2012).

19) J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, ACS Nano 7(10), 9019 (2013).

20) W-C Chao, T-H Chiang, Y-C Liu, Z-X Huang, C-C Liao, C-H Chu, C-H Wang, H-W Tseng, W-Y Hung and P-T Chou, Chem. Commun., 55, 13299 (2019).

21) T. Fang, T. Wang, X. Li, Y. Dong, S. Bai, J. Song, Sci. Bullet. 66, 36 (2021).

22) 22) C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annual Review of Materials Research. 30 (1), 545 (2000).

23) Y. Volkov, Biochem. Biophys. Res. Commun. 468, 419 (2015).

24) H. Z. Zhong, Z. L. Bai, B. S. and Zou, J. Phys. Chem. Lett. 3, 3167 (2012)

25) Z. Tan, Y. Zhang, C. Xie, H. Su, J. Liu, C. Zhang, N. Dellas, S. E. Mohney, Y. Wang, J. Wang and J. Xu, Adv. Mater. 23, 3553 (2011).

26) T. Chen, Y. Xu, Z. Xie, L. Wang, W. Jiang and W. Jiang, Opt. Mater. 105, 109885 (2020).

27) X. Yuan, J. Hua, R. Zeng, D. Zhu, W. Ji, P. Jing, X. Meng, J. Zhao and H. Li, Nanotechnology 25, 435202 (2014).

28) J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee and C. Lee, Nano Lett. 12, 2362 (2012).

29) Y. Shu, X. Lin, H. Qin, Z. Hu, Y. Jin, and X. Peng, Angew Chem. Int. Ed. 59, 23122 (2020).

30) P. Zhang, Y. Feng, X. Wen, W. Cao, R. Anthony, U. Kortshagen, G. Conibeer, S. Huanga, Sol. Ener. Mat. and Sol. Cell 145, 391 (2016).

31) A. M. Wagner, J. M. Knipe, G. Orive, and N. A. Peppa, Act. Biomat. 94, 44 (2019).

32) T. Takagahara, K. Takeda, Phys. Rev. B 46, 15578 (1992).

33) M. C. Beard, J. Phys. Chem. Lett. 2, 1282 (2011).

34) Website,“ItaiItaidisease”,http://www.kanazawa-ed.ac.jp/~pubhealt/cadmium2/itaiitai-/itai01.html.

35) Website,“Toyama concludes cadmium cleanup”, https://www.japantimes.co.jp/ news/2012/03/18/national /toyama-concludes-cadmium-cleanup/

36) A. P. Peng, X. G. Wickham, J. Alivisatos, J. Am. Chem. Soc. 120, 5343 (1998).

37) Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A. F. Nogueira and E. H. Sargent, ACS Appl. Mater. Interfaces 7, 25007 (2015).

38) J. Ma, M. Liu, Z. Li and L. Li, Opt. Mater. (Amst). 47, 56 (2015).

39) J. Lee and C. S. Han, Nanoscale Res. Lett. 9, 1 (2014).

40) H. C. Yoon, J. H. Oh, M. Ko, H. Yoo and Y. R. Do, ACS Appl. Mater. Interfaces 7, 7342 (2015).

41) W. Zhang, Q. Lou, W. Ji, J. Zhao and X. Zhong, Chem. Mater. 26 [2], 1204 (2014).

42) Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A. F. Nogueira and E. H. Sargent, ACS Appl. Mater. Interfaces 7 [45], 25007 (2015).

43) Z. Liu, K. Zhao, A. Tang, Y. Xie, L. Qian, W. Cao, Y. Yang, Y. Chen and F. Teng, Org. Electron. 36, 97 (2016).

44) F. Chen, Z. Liu, Z. Guan, Z. Liu, X. Li, Z. Deng, F. Teng and A. Tang, ACS Photonics 5 [9], 3704 (2018).

45) R. Rossetti, J. L. Ellison, J. M. Gibson and L. E. Brus, J. Chem. Phys. 80, 4464 (1984).

46) Y. Spanhel, M. Haase, H. Weller and A. Hengleiir, J. Am. Chem. Soc. 109, 5649 (1987).

47) A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).

48) C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

49) F. Grieser, D. N. Furlong, R. S. Urquhart and D. J. Elliot, Fin. Par. Sci. and Tech. 12, 733 (1996).

50) M. Sundaram, S. A. Chalmers, P. F. Hopkins, A. C. Gossard, Sci. 254, 1326 (1991).

51) A. P. Alivisatos, Adv. Sci. 271, 933 (2010).

52) V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, H. Eisler, M. G. Bawendi, V. I. Klimov, A. A. Mikhailovsky, S. Xu and A. Malko, 290, 314 (2016).

53) M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski and W. Langbein, Nano Lett. 1, 309 (2001).

54) N. L. Pickett, O. Masala, and J. Harris, Material Matters 3, Article 1 (2011).

55) M. V. Kovalenko et al., ACS Nano 9, 1012 (2015).

56) A. M. Smith and S. Nie, Acc. Chem. Res. 43, 190 (2010).

57) J.-P. Yang, E.-L. Hsiang and H.-M. Philip Chen, SID Symp. Dig. Tech. Pap. 47, 21 (2016).

58) H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung and A. L. Rogach, Adv. Sci. 2, 1 (2015).

59) Y. Yang, C. Zhang, X. Qu, W. Zhang, M. Marus, B. Xu, K. Wang and X. W. Sun, IEEE Trans. Nanotechnol. 18, 220 (2019).

60) Z. Zhao, J. Tian, Y. Sang, A. Cabot and H. Liu, Adv. Mater. 27, 2557 (2015).

61) C. F. Klingshirn, Chem. Phys. Chem. 8, 782 (2007).

62) E. M. Kaidashev, M. Lorenz, H. Von Wenckstern, A. Rahm, H. C. Semmelhack, K. H. Han, G. Benndorf, C. Bundesmann, H. Hochmuth and M. Grundmann, Appl. Phys. Lett. 82, 3901 (2003).

63) B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan and P. T. Kazlas, Nat. Photonics 7, 407 (2013).

64) J. Zhang, H. Liu, Z. Wang, N. Ming, Z. Li and A. S. Biris, Adv. Funct. Mater. 17, 3897 (2007).

65) Y. Xie, M. Madel, T. Zoberbier, A. Reiser, W. Jie, B. Neuschl, J. Biskupek, U. Kaiser, M. Feneberg and K. Thonke, Appl. Phys. Lett. 100, 182101 (2012).

66) N. H. Alvi, W. U. Hassan, B. Farooq, O. Nur and M. Willander, Mater. Lett. 106, 158 (2013).

67) Q. Li, K. Gao, Z. Hu, W. Yu, N. Xu, J. Sun and J. Wu, J. Phys. Chem. C 116, 2330 (2012).

68) T. Minami, H. Nanto and S. Takata, Appl. Phys. Lett. 41, 958 (1982).

69) M. Bouderbala, S. Hamzaoui, B. Amrani, A. H. Reshak, M. Adnane, T. Sahraoui and M. Zerdali, Phys. B Condens. Matter 403, 3326 (2008).

70) J. Luo, J. Lin, N. Zhang, X. Guo, L. Zhang, Y. Hu, Y. Lv, Y. Zhu and X. Liu, J. Mater. Chem. C 6, 5542 (2018).

71) J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend and W. Huang, Adv. Mater. 27, 2311 (2015).

72) Q. Yuan, X. Guan, X. Xue, D. Han, H. Zhong, H. Zhang, H. Zhang and W. Ji, Phys. Status Solidi - Rapid Res. Lett. 13, 1800575 (2018).

73) Y. L. Shi, F. Liang, Y. Hu, M. P. Zhuo, X. D. Wang and L. S. Liao, Nanoscale 9, 14792 (2017).

74) Y. H. Kim, T. H. Han, H. Cho, S. Y. Min, C. L. Lee and T. W. Lee, Adv. Funct. Mater. 24, 3808 (2014).

75) T. Sun, B. Yao, A. P. Warren, K. Barmak, M. F. Toney, R. E. Peale and K. R. Coffey, Phys. Rev. B - Condens. Matter Mater. Phys. 81, 1 (2010).

76) T. Yamada, H. Makino, N. Yamamoto, and T. Yamamoto, J. Appl. Phys., 107, 123534 (2010).

77) O. Çiçek, S. Kurnaz, A. Bekar and Ö. Öztürk, Compos. Part B Eng. Compos. Part B Eng. 174, 106987 (2019).

78) K. Barmak, A. Darbal, K. J. Ganesh, I. Corporation, U. States, J. M. Rickman, T. S. Bo Yao, A. P. Warren, and K. R. Coffey. J. Vac. Sci. & Tech. A 32, 061503 (2014).

79) Z. Onuk, N. Rujisamphan, R. Murray, M. Bah and M. Tomakin, Appl. Surf. Sci. 396, 1458 (2017).

80) L. B. Freund, S. Suresh, “Thin Film Materials: Stress, Defect Formation and Surface Evolution”, Cambridge University Press, 2004, doi:10.1017/CBO9780511754715, p. 66, p. 80.

81) C. Mead, W. Spitzer and F. L. Position, Phys. Rev. 134, A713 (1964)

82) M. M. R. Biswas, Md. F. Hossain and H. Okada, Jpn. J. Appl. Phys. 60, 084001 (2021).

83) T. Minami, H. Nanto and S. Takata, Appl. Phys. Lett. 41, 958 (1982).

84) Z. Onuk, N. Rujisamphan, R. Murray, M. Bah, M. Tomakin and S. I. Shah, Appl. Surf. Sci. 396, 1458 (2017).

85) L. B. Freund, S. Suresh, Thin Film Materials, Stress; Defect Formation and Surface Evolution (Cambridge University Press, 2010) Online pub. P. 44, 47, 79.

86) S. M. Park, T. Ikegami and K. Ebihara, Thin Solid Films 513, 90 (2006).

87) M. Miyazaki, K. Sato, A. Mitsui and H. Nishimura, J. Non-Cryst. Solids, 218, 323 (1997).

88) J. H. Park, J. M. Shin, S. Y. Cha, J. W. Park, S. Y. Jeong, H. K. Pak and C. R. Cho, J. Korean Phys. Soc. 49, 584 (2006).

89) D. H. Kim, E. Byon, G. H. Lee and S. Cho, Thin Solid Films 510, 148 (2006).

90) C. Mead, W. Spitzer and F. L. Position, Phys. Rev. 134, A713 (1964).

91) T. Sun, B. Yao, A.P. Warren, K. Barmak, M.F. Toney, R.E. Peale, and K.R. Coffey, Phy. Rev. 81, 155454 (2010).

92) K. Barmak, A. Darbal, K. J. Ganesh, P. J. Ferreira, J. M. Rickman, T. Sun. B. Yao, A. P. Warren, and K. R. Coffey. J. Vac. Sci. & Tech. A 32, 61503 (2014).

93) J. Wang, N. Wang, Y. Jin, J. Si, Z. K. Tan, H. Du, L. Cheng, X. Dai, S. Bai, H. He, Z. Ye, M. L. Lai, R. H. Friend and W. Huang, Adv. Mater. 27, 2311 (2015).

94) K. Shoda, M. Morimoto, S. Naka and H. Okada, IEICE Trans. Electron., E102-C, 196 (2019).

95) M. Morimoto, T. Yoshida, S. Naka and H. Okada, Jpn. J. Appl. Phys. 59, SDDC03 (2020).

96) N. Matsusue, S. Ikame, Y. Suzuki, H. Naito, Appl. Phys. Lett. 85, 4046 (2004).

97) N. Matsusue, Y. Suzuki, and H. Naito, Jpn. J. Appl. Phys. 45, 5966 (2006).

98) Supplementary Information 2 (Chapter 3)

99) R. Rosetti, J. L. Ellison, J. M. Gibson, and L. E. Brus, J. Chem. Phys. 80, 4464 (1984).

100) L. Spanhel, M. Haase, H. Weller, and A. Henglein, J. Am. Chem. Soc. 109, 5649 (1987).

101) A. R. Kortan, R. Hull, R. L. Opila, M. G. Bawendi, M. L. Steigerwald, P. J. Carroll, and L. E. Brus, J. Am. Chem. Soc. 112, 1327 (1990).

102) C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

103) F. Grieser, D. N. Furlong, D. Scoberg, I. Ichinose, N. Kimizuka, T. Kunitake, J. Chem. Soc. Faraday Trans. 88, 2207 (1992).

104) M. Sundaram, S. A. Chalmers, P. F. Hopkins, A. C. Gossard, Science 254, 1326-1335 (1991).

105) A. P. Alivisatos, Science 271, 933 (1996).

106) V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).

107) M. V. Artemyev, U. Woggon, R. Wannemacher, H. Jaschinski and W. Langbein, Nano Lett. 1, 309 (2001).

108) N. L. Pickett, O. Masala, J. Harris, Mater. Matters, 3, 24 (2008).

109) M. V. Kovalenko, L. Manna A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, P. Guyot-Sionnnest, G. Konstantatos, W. J. Parak, T. Hyeon, B. A. Korgel, C. B. Murray and W. Heiss, ACS Nano. 9, 1012 (2015).

110) J. Q. Grim, L. Mannaab and I. Moreels, Chem. Soc. Rev. 44, 5897 (2015).

111) M. M. R. Biswas, Md. F. Hossain. M. Morimoto, S. Naka and H. Okada, J. Vac. Sci B. under printing (2021).

112) M. Morimoto, T. Yoshida, S. Naka and H. Okada, Jpn. J. Appl. Phys. 59, SDDC03 (2020).

113) S.Naka, K. Shinno, H.Okada, H.Onnagawa and K. Miyashita, Jpn. J. Appl. Phys. 33, L1772 (1994).

114) Z. Wang, H. Okada, and S. Naka, Jpn. J. Appl. Phys. 49, 01AA02 (2010).

115) M. M. R. Biswas, and H. Okada, Display Week (SID’21- New York, U. S. A), 65, 7, 2021.

116) S. Naka, K. Shinno, H. Okada, H. Onnagawa and K. Miyashita, Jpn. J. Appl. Phys. 33, L1772 (1994).

117) Z. Wang, H. Okada, and S. Naka, Jpn. J. Appl. Phys. 49, 01AA02 (2010).

118) B. Zhou, A. V. Rogachev, Z. Liu, D. G. Piliptsou, H. Ji, X. Jiang. Appl. Sur. Sci. 258, 5759 (2012).

119) B. Geffroy, P. le Roy, C. Polym. Int. 55, 572(2006).

120) P.O. Anikeeva, C. Madigan, J. Halpert, M. Bawendi, V. Bulović, Phys. Rev. B. 78, 5434 (2008).

121)J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, R. D. Schaller, Phys. Rev. Lett. 101, 1(2008)

122) R. C. Ashoori et al., Nature. 379, 6564 (1996).

123) R. Wu, T. Wang, M. Wu, Y. Lv, X. Liu, J. Li, H. Shen, L. Song Li, Chem. Eng. J. 348 447(2018).

124) C. B. Murray, D. J. Norris and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).

125) A. M. Smith and S. Nie, Acc. Chem. Res. 43, 190 (2010).

126) J.-P. Yang, E.-L. Hsiang and H.-M. Philip Chen, SID Symp. Dig. Tech. Pap. 47, 21 (2016).

127) H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung and A. L. Rogach, Adv. Sci. 2, 1 (2015).

128) Y. Yang, C. Zhang, X. Qu, W. Zhang, M. Marus, B. Xu, K. Wang and X. W. Sun, IEEE Trans. Nanotechnol. 18, 220 (2019).

129) A. I. Ekimov, A. A. Onushchenko, JETP Lett. 34, 345 (1981).

130) Y. Masumoto, T. Takagahara, “Semiconductor Quantum Dots: Physics”, Springer (Berlin Heidelberg, 2002), online ed., p 16.

131) A. I. Ekimov, A. A. Onushchenko, JETP Lett. 34, 345 (1981).

132) M. C. Bawendi, M. L. Steigerwald, L. E. Brus, Annual Review of Physical Chemistry 41, 477 (1990).

133) A. D. Yoffe et. al., Advances in Physics, 150, 1(2001).

134) Book: Bailey, R. E.; Nie, S. Edited by Rao, C. N. R.; Mueller, A.; Cheetham, A. K, Chem. Nano. 2, 405 (2004).

135) D. Dorfs, A. Eychmueller, Chemie, 220,1539 (2006).

136) S.I. Pokutny et al., Semiconductors. 41, 1341(2007).

137) Book: S. A. Holgate, “Understanding Solid State Physics”, 1st edition, CRC Press, London (2009).

138) C.A.M. Bonilla, V. V Kouznetsov, “Green” Quantum Dots: Basics, Green Synthesis , and Nanotechnological Applications”, (On line edition. Intech Open Book 2016), p 2-20.

139) Y. Masumoto, T. Takagahara, “Semiconductor Quantum Dots: Physics, Spectroscopy and Applications”, (2nd edition, Springer, Berlin), p. 73.

140) C. De Mello Donegá, Nanoparticles: Workhorses of nanoscience, 2014.

141) C.A.M. Bonilla, V. V Kouznetsov, “Green” Quantum Dots: Basics, Green Synthesis , and Nanotechnological Applications”, (On line edition. Intech Open Book 2016), p 2-20.

142) Z. Li et al., Vac.137, 38(2017).

143) Y. Kang, Z. Song, X. Jiang, X. Yin, L. Fang, J. Gao, Y. Su and F. Zhao, Nano. Res. Lett., 12, 154 (2017).

144) P.O. Anikeeva, “Physical Properties and Design of Light-Emitting Devices Based on Organic Materials and Nanoparticles”, Massachusetts Institute of Technology, February, 2009.

145) P.O. Anikeeva, C. Madigan, J. Halpert, M. Bawendi, V. Bulović, Phys. Rev. B. 78, 5434 (2008).

146) W.K. Bae, S. Brovelli, V. I . Klimov, MRS Bulletin 38, 721 (2013).

147) H. Huang, A. Dorn, G.P. Nair, V. Bulović, M.G. Bawendi, Nano Lett. 7, 3781 (2007).

148) S. Coe-Sullivan, W-K. Woo, J.S. Steckel, M. Bawendi, V. Bulović, 4, 123 (2003).

149) J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, R. D. Schaller, Phys. Rev. Lett. 101, 1(2008)

150) D. Bozyigit, O. Yarema, V. Wood, Adv. Funct. Mater. 23, 3024(2013). 80: charging

151) Y. Shirasaki, G. J. Supran, M. G. Bawendi, V. Bulović, Nat. Photonics. 7, 13 (2013).

152) A. Khetubol, S. Van Snick, A. Hassinen, E. Fron, Y. Firdaus, L. Pandey, C. C. David, K. Duerinckx, W. Dehaen, Z. Hens, J. Appl. Phys. 113, 3507 (2013).

153) G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, Opt. Lett. 22, 396 (1997).

154) E. Plis, J. B. Rodriguez, S . Krishna, 6, 242 (2011).

155) P.-A. Will, S. Reineke, “Handbook of Organic Materials for Electronic and Photonic Devices (Second Edition (online), 2019), p 710.

156) M. Shukla, N. Brahme, R. S. Kher, M. S. K. Khokhar, J. Pure Appl. Phys. 49, 142(2011).

157) S. Shioyama and S. Ibuki, Oyo Buturi 57, 935 (1988).

158) B. Geffroy, P. le Roy, C. Polym. Int. 55, 572 (2006).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る