リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on Coriandrum sativum affectingcancer metastasis and the actionmechanism」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on Coriandrum sativum affectingcancer metastasis and the actionmechanism

黄 禾甯 近畿大学

2022.03.18

概要

Coriandrum sativum (coriander) is an annual herb in the Apiaceae family which has been wildly used in cooking as a spice worldwide (1). The leaves of coriander are used as decoration or flavor source in Asian and Mexican dishes and used in the process for pickling vegetables outside of Asia (2, 3). On the other hand, the coriander roots, with more intense flavor than the leaves, are used in a variety of Asian cuisines, especially in Thai dishes as soup or curry pastes.

 In recent years, it was reported that coriander had several physiological properties, such as anti-inflammatory, analgesic, antioxidant, anti-diabetic, anti-mutagenic and anti- carcinogenic effects (4, 5, 6). In progression of malignant tumor, not only proliferation but also metastasis is important and critical. Migration and invasion of cancer cells are involved in cancer metastasis. Although there were several reports about anti- carcinogenic and anti-proliferative effects of coriander (6, 7, 8), the effect of coriander on migration and invasion of cancer cells has not yet been fully elucidated. Therefore, the aim of this study was to investigate the effects of coriander on migration and invasion of cancer cells and the underlying molecular mechanisms.

 Coriander contains serval compounds, such as phenolic acids and flavonoids. In flavonoids which are contained in coriander, there are quercetin, rutin, luteolin resorcinol, kaempferol, naringin, apigenin and cumarine [7]. Some flavonoids showed major developments in anticancer drug with potential to destroy cancer cells through apoptotic induction [9]. Rutin (3,3’,4’,5,7-pentahydroxyflavone-3-rhamnoglucoside) and quercetin are a bioflavonoid glycoside found in plants which have a widespread pharmacological activities, such as anti-hypercholesterolemic, antiarthritic, antiviral, antihypertensive, antimicrobial, anti-inflammatory, anticancer, antidiabetic, gastroprotective, antiosteoporosis, diuretic, anticonvulsant, neuroprotective, cardioprotective, radioprotective, nephroprotective, hepatoprotective, reduction of oxidative stress and wound healing effect (10,11,12,13,14,15,16). The flavonoid rutin and its aglycone quercetin possess anti glioma effects related to the property of modulating the microglial inflammatory profile [17]. Persimmon leaves, which highly contain quercetin and rutin, inhibited proliferation and migration of PC-3 cells, and induced apoptosis of PC-3 cells by activation of oxidative stress [18].

 Although anti-carcinogenic potential of coriander has been known well, the effects of coriander on cancer metastasis have not yet been fully elucidated. In the present study, the effects of coriander on migration and invasion abilities of cancer cells were investigated in vitro and in vivo by using human hepatocellular carcinoma cell line (HepG2) (19), mouse melanoma cell line (B16F10) (20) and human colorectal adenocarcinoma cell line (Caco2) (21). Furthermore, the effects of coriander on intracellular signaling pathway involved in cell migration and invasion were investigated.

参考文献

1. Barros L, Duenas M, Dias MI, Sousa MJ, Santos-Buelga C, Ferreira IC. Phenolic profiles of in vivo and in vitro grown Coriandrum sativum L. Food Chemistry. 2012, 132:841-848.

2. Bhandari M, Gupta A. Variation and association analysis in coriander. Euphytica. 1991, 58:1-4.

3. Rajeshwari C, Andallu B. Isolation and simultaneous detection of flavonoids in the methanolic and ethanolic extracts of Coriandrum sativum L. seeds by RP-HPLC. Pak J Food Sci. 2011, 21:13-21

4. Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V. Coriander (Coriandrum sativum): A promising functional food toward the well-being. Food Res Int. 2018, 105:305-323.

5. Wu TT, Tsai CW, Yao HT, Lii CK, Chen HW, Wu YL, Chen PY, Liu KL. Suppressive effects of extracts from the aerial part of Coriandrum sativum L. on LPS-induced inflammatory responses in murine RAW 264.7 macrophages. J Sci Food Agric. 2010, 90:1846-1854.

6. Tang EL, Rajarajeswaran J, Fung SY, Kanthimathi M. Antioxidant activity of Coriandrum sativum and protection against DNA damage and cancer cell migration. BMC Complement Altern Med. 2013, 13:347-360.

7. Laribi B, Kouki K, Ml’Hamdi M, Bettaieb T. Coriander (Coriandrum sativum L.) and its bioactive constituents. Fitoterapia. 2015, 103:9-26.

8. Zhang CR, Dissanayake AA, Kevseroglu K, Nair MG. Evaluation of coriander spice as a functional food by using in vitro bioassays. Food Chem. 2015, 167:24-29.

9. Brusselmans K, Vrolix R, Verhoeven G, Swinnen J. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. Journal of Biological Chemistry. 2004, 280:5636-5645

10. Xu P, Wang S, Yu X, Su Y, Wang T, Zhou W, Zhang H, Wang Y, Liu R. Rutin improves spatial memory in Alzheimer’s disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behavioural Brain Research. 2014. 264:173-180.

11. Li M, Jiang Y, Jing W, Sun B, Miao C, Ren L. Quercetin provides greater cardioprotective effect than its glycoside derivative rutin on isoproterenol induced cardiac fibrosis in the rat. Canadian Journal of Physiology and Pharmacology. 2013, 91(11):951-959.

12. Patil S, Mallaiah S, Patil R. Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation. Journal of Medical Physics. 2013, 38(2):87.

13. Kamel K, Abd El-Raouf O, Metwally S, Abd El-Latif H, El-sayed M. Hesperidin and rutin, antioxidant citrus flavonoids, attenuate cisplatin induced nephrotoxicity in rats. Journal of Biochemical and Molecular Toxicology. 2014, 28(7):312-319.

14. Horcajada M, Sanchez C, Membrez F, Drion P, Comblain F, Offord E, Henrotin Y. Oleuropein or rutin consumption decreases the spontaneous development of OA in Hartley guinea pig. Osteoarthritis and Cartilage. 2014, 22:461-462.

15. Yan X, Hao Y, Chen S, Jia G, Guo Y, Zhang G, Wang C, Cheng R, Hu T, Zhang X, Ji H. Rutin induces apoptosis via P53 up-regulation in human glioma CHME cells. Translational Cancer Research. 2019, 8(5):2005-2013.

16. Chen H, Miao Q, Geng M, Liu J, Hu Y, Tian L, Pan J, Yang Y. Anti-tumor effect of rutin on human neuroblastoma cell lines through inducing G2/M cell cycle arrest and promoting apoptosis. The Scientific World Journal. 2013, 1-8.

17. da Silva A, Cerqueira Coelho P, das Neves Oliveira M, oliveira J, oliveira Amparo J, da silva K, Soares J, Pitanga B, dos Santos Souza C, de Faria Lopes G, da Silva V, de Fatima Dias Costa M, Junier M, Chneiweiss H, Moura-Neto V, Costa S. The flavonoid rutin and its aglycone quercetin modulate the microglia inflammatory profile improving antiglioma activity. Brain, Behavior, and Immunity. 2020 85:170- 185.

18. Ding Y, Ren K, Dong H, Song F, Chen J, Guo Y, Liu Y, Tao W, Zhang Y. Flavonoids from persimmon (Diospyros kaki L.) leaves inhibit proliferation and induce apoptosis in PC-3 cells by activation of oxidative stress and mitochondrial apoptosis. Chemico- Biological Interactions. 2017, 275:210-217.

19. Javitt N. HepG2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB J. 1990, 4:161-168.

20. Gehlsen K, Hendrix M. In vitro assay demonstrates similar invasion profiles for B16F1 and B16F10 murine melanoma cells. Cancer Letters. 1986, 30:207-212.

21. Lenaerts K, Bouwman F, Lamers W, Renes J, Mariman E. Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics. 2007, 8(1): p.91.

22. Bray F, Ferlay J, Soerjomataram I, Siegel R, Torre L, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancer in 185 countries. CA Cancer J Clin. 2018, 68:394-424.

23. Siegel R, Miller K, Jemal A. Cancer statistics, 2017. CA: A Cancer Journal for Clinicians. 2017, 67(1):7-30.

24. Wang X, Ding X, Nan L, Wang Y, Wang J, Yan Z, Zhang W, Sun J, Zhu W, Ni B. Investigation of the roles of exosomes in colorectal cancer liver metastasis. Oncology reports. 2015, 33:2445-2453.

25. Cui N, Hu M, Khalil RA. Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 2017, 147:1-73.

26. Mekkawy AH, Pourgholami MH, Morris DL. Involvement of urokinase-type plasminogen activator system in cancer: An Overview. Med Res Rev. 2014, 34(5):918-956.

27. Ritch SJ, Brandhagen BN, Goyeneche AA, Telleria CM. Advanced Assessment of Migration and Invasion of Cancer Cells in Response to Mifepristone Therapy Using Double Fluorescence Cytochemical Labeling. BMC Cancer. 2019, 19(1):376.

28. Yasuzawa T, Mima A, Ueshima S. Antithrombotic effect of oral administration of Mozuku (Cladosiphon okamuranus, Brown Seaweed) extract in rat. J Nutr Sci Vitaminol (Tokyo) 65:171-176.

29. Chhabra A, Rani V. Gel-Based Gelatin Zymography to Examine Matrix Metalloproteinase Activity in Cell Culture. Methods Mol Biol. 2018, 1731:83-96.

30. Devi Khwairakpam A, Monisha J, Roy N, Bordoloi D, Padmavathi G, Banik K, Khatoon E, Kunnumakkara A. Vietnamese coriander inhibits cell proliferation, survival and migration via suppression of Akt/mTOR pathway in oral squamous cell carcinoma. J Basic Clin Physiol Pharmacol, 2019, 0:1-15.

31. Walker C, Mojares E, del Rio Hernandez A. Role of extracellular matrix in development and cancer progression. Int J Mol Sci. 2018, 19:3028-3040.

32. Rolland Y, Demeule M, Beliveau R. Melanotransferrin stimulates t-PA-dependent activation of plasminogen in endothelia cells leading to cell detachment. Biochim Biophys Acta. 2006, 1763:393-401.

33. Sato M, Kawana K, Adachi K, Fujimoto A, Yoshida M, Nakamura H, Nishida H, Inoue T, Taguchi A, Takahashi J, Kojima S, Yamashita A, Tomio K, Nagamatsu T, Wada-Hiraike O, Oda K, Osuga Y, Fujii T. Decreased expression of the plasminogen activator inhibitor type 1 is involved in degradation of extracellular matrix surrounding cervical cancer steam cells. Int J Oncol. 2015, 48:829-835.

34. Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016, 31:177-183.

35. Kapoor C, Vaidya S, Wadhwan V, Hitesh Kaur G, Pathak A. Seesaw of matrix metalloproteinases (MMPs). J Cancer Res Ther. 2016, 12:28-35.

36. Mauro C, Pesapane A, Formisano L, Rosa R, D’Amato V, Ciciola P, Servetto A, Marciano R, Orisini R, Monteleone F, Zambrano N, Fontanini G, Servadio A, Pignataro G, Grumetto L, Lavecchia A, Bruzzese D, Iaccarino A, Troncone G, Veneziani B, Montuori N, Placido S, Bianco R. Urokinase-type plasminogen activator receptor (uPAR) expression enhances invasion and metastasis in RAS mutated tumors. Sci Rep. 2017, 7:1-12.

37. Kerkela E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol. 2003, 12:109-125.

38. Friedmann-Morvinski D, Narasimamurthy R, Xia Y, Myskiw C, Soda Y, Verma I. Targeting NF-κB in glioblastoma: A therapeutic approach. Sci Adv. 2016, 2:1-11.

39. Huang C, Lee C, Tu C, Wu C, Huang M, Wei P, Chang Y. Glucose-regulated protein 94 mediates progression and metastasis of esophageal squamous cell carcinoma via mitochondrial function and the NF-kB/COX-2/VEGF axis. Oncotarget. 2018, 9:9425-9441.

40. Guo Y, Zhang Y, Yang X, Lu P, Yan X, Xiao F, Zhou H, Wen C, Shi M, Lu J, Meng Q. Effects of methylglyoxal and glyoxalase I inhibition on breast cancer cells proliferation, invasion, and apoptosis through modulation of MAPKs, MMP9, and Bcl-2. Cancer Biol Ther. 2016, 17:169-180.

41. Li C, Li Y, Sui L, Wang J, Li F. Phenyllactic acid promotes cell migration and invasion in cervical cancer via IKK/NF-κB- mediated MMP-9 activation. Cancer Cell Int. 2019, 19:241-252.

42. Ho Y, Yang J, Li T, Lin J, Lin J, Lai K, Ma C, Wood W, Chung J. Berberine suppresses in vitro migration and invasion of human SCC-4 tongue squamous cancer cells through the inhibitions of FAK, IKK, NF-κB, u-PA and MMP-2 and -9. Cancer Lett. 2009, 279:155-162.

43. Wu H, Li X, Feng M, Yao L, Deng Z, Zao G, Zhou Y, Chen S, Du Z. Downregulation of RNF138 inhibits cellular proliferation, migration, invasion and EMT in glioma cells via suppression of the Erk signaling pathway. Oncol Rep. 2018, 40:3285-3296.

44. Wu Z, Wang T, Fang M, Huang W, Sun Z, Xiao J, Yan W. MFAP5 promotes tumor progression and bone metastasis by regulating ERK/MMP signaling pathways in breast cancer. Biochem Biophys Res Commun. 2018, 498:495-501.

45. Zhao H, Xu J, Wang Y, Jiang R, Li X, Zhang L, Che Y. Knockdown of CEACAM19 suppresses human gastric cancer through inhibition of PI3K/Akt and NF-κB. Surg Oncol. 2018, 27:495-502.

46. Lim HN, Baek SB, Jung HJ. Bee venom and its peptide component melittin suppress growth and migration of melanoma cells via inhibition of PI3K/AKT/mTOR and MAPK pathways Molecules. 2018, 24:929-841.

47. Qiang YW, Yao L, Tosato G, Rudikoff S. Insulin-like growth factor I induces migration and invasion of human multiple myeloma cells. Blood. 2004, 103:301-308.

48. Reeves PG, Nielsen FH, Fahey GC. AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993, 123:1939-1951.

49. Souza LE, Almeida DC, Yaochite JN, Covas DT, Fontes AM. Intravenous administration of bone marrow-derived multipotent mesenchymal stromal cells enhances the recruitment of CD11b+ myeloid cells to the lungs and facilitates B16- F10 melanoma colonization. Exp Cell Res. 2016, 345:141-149.

50. Giavazzi R, Decio A. Syngeneic murine metastasis models: B16 melanoma. Methods Mol Biol. 2014, 22:438-443.

51. Bhat S, Kaushal P, Kaur M, Sharma H. Coriander (Coriandrum sativum L.): Processing, nutritional and functional aspects. Afr J Plant Sci. 2014, 8:25-33.

52. Aelenei P, Rimbu C, Guguianu E, Dimitriu G, Aprotosoaie A, Brebu M, Horhogea C, Miron A. Coriander essential oil and linalool-interactions with antibiotics against Gram-positive and Gram-negative bacteria. Lett Appl Microbiol. 2019, 68:156-164.

53. Ekstrom A, Serafini M, Nyren O, Wolk A, Bosetti C, Bellocco R. Dietary quercetin intake and risk of gastric cancer: results from a population-based study in Sweden. Ann Oncol. 2010, 22:438-443.

54. Li H, Chen C. Quercetin has antimetastatic effects on gastric cancer cells via the interruption of uPA/uPAR function by modulating NF-κB, PKC-δ, ERK1/2, and AMPKα. Integr Cancer Ther. 2017, 17:511-523.

55. Vijayababu MR, Arunkumar A, Kanagaraj P, Venkataraman P, Krishnamoorthy G, Arunakaran J. Quercetin downregulates matrix metalloproteinases 2 and 9 protein expression in prostate cancer cells (PC-3). Mol Cell Biochem. 2006, 287:109-116.

56. Pan HC, Jiang Q, Yu Y, Mei JP, Cui YK, Zhao WJ. Quercetin promotes cell apoptosis and inhibits the expression of MMP-9 and fibronectin via the AKT and ERK signaling pathways in human glioma cells. Neurochem Int. 2015, 80:60-71.

57. Santos BL, Oliveira MN, Coelho PL, Pitanga BP, da Silva AB, Adelita T, Silva VD, Costa Mde F, El-Bachá RS, Tardy M, Chneiweiss H, Junier MP, Moura-Neto V, Costa SL. Flavonoids suppress human glioblastoma cell growth by inhibiting cell metabolism, migration, and by regulating extracellular matrix proteins and metalloproteinases expression. Chem Biol Interact. 2015, 242: 123-138.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る