リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Median raphe serotonergic neurons projecting to the interpeduncular nucleus control preference and aversion

Kawai, Hiroyuki Bouchekioua, Youcef Nishitani, Naoya Niitani, Kazuhei Izumi, Shoma Morishita, Hinako Andoh, Chihiro Nagai, Yuma Koda, Masashi Hagiwara, Masako Toda, Koji Shirakawa, Hisashi Nagayasu, Kazuki Ohmura, Yu Kondo, Makoto Kaneda, Katsuyuki Yoshioka, Mitsuhiro Kaneko, Shuji 京都大学 DOI:10.1038/s41467-022-35346-7

2022

概要

Appropriate processing of reward and aversive information is essential for survival. Although a critical role of serotonergic neurons in the dorsal raphe nucleus (DRN) in reward processing has been shown, the lack of rewarding effects with selective serotonin reuptake inhibitors (SSRIs) implies the presence of a discrete serotonergic system playing an opposite role to the DRN in the processing of reward and aversive stimuli. Here, we demonstrated that serotonergic neurons in the median raphe nucleus (MRN) of mice process reward and aversive information in opposite directions to DRN serotonergic neurons. We further identified MRN serotonergic neurons, including those projecting to the interpeduncular nucleus (5-HTMRN→IPN), as a key mediator of reward and aversive stimuli. Moreover, 5-HT receptors, including 5-HT2A receptors in the interpeduncular nucleus, are involved in the aversive properties of MRN serotonergic neural activity. Our findings revealed an essential function of MRN serotonergic neurons, including 5-HTMRN→IPN, in the processing of reward and aversive stimuli.

この論文で使われている画像

参考文献

1.

Nieh, E. H. et al. Inhibitory input from the lateral hypothalamus to

the ventral tegmental area disinhibits dopamine neurons and

promotes behavioral activation. Neuron 90, 1286–1298 (2016).

18

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Article

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Xiao, C. et al. Cholinergic mesopontine signals govern locomotion

and reward through dissociable midbrain pathways. Neuron 90,

333–347 (2016).

Li, Y. et al. Rostral and caudal ventral tegmental area GABAergic

inputs to different dorsal raphe neurons participate in opioid

dependence. Neuron 101, 748–761.e5 (2019).

Tan, K. R. et al. GABA neurons of the VTA drive conditioned place

aversion. Neuron 73, 1173–1183 (2012).

LeGates, T. A. et al. Reward behaviour is regulated by the strength

of hippocampus–nucleus accumbens synapses. Nature 564,

258–262 (2018).

Golden, S. A. et al. Basal forebrain projections to the lateral

habenula modulate aggression reward. Nature 534,

688–692 (2016).

Kim, J. et al. Rapid, biphasic CRF neuronal responses encode

positive and negative valence. Nat. Neurosci. 22,

576–585 (2019).

Matsumoto, M. & Hikosaka, O. Two types of dopamine neuron

distinctly convey positive and negative motivational signals. Nature 459, 837–841 (2009).

Paton, J. J., Belova, M. A., Morrison, S. E. & Salzman, C. D. The

primate amygdala represents the positive and negative value of

visual stimuli during learning. Nature 439, 865–870 (2006).

Hayashi, K., Nakao, K. & Nakamura, K. Appetitive and aversive

information coding in the primate dorsal raphé nucleus. J. Neurosci. 35, 6195–6208 (2015).

Volkow, N. D. & Morales, M. The brain on drugs: from reward to

addiction. Cell 162, 712–725 (2015).

Hu, H. Reward and aversion. Annu. Rev. Neurosci. 39,

297–324 (2016).

Kranz, G. S., Kasper, S. & Lanzenberger, R. Reward and the serotonergic system. Neuroscience 166, 1023–1035 (2010).

Liu, Z. et al. Dorsal raphe neurons signal reward through 5-HT and

glutamate. Neuron 81, 1360–1374 (2014).

Nagai, Y. et al. The role of dorsal raphe serotonin neurons in the

balance between reward and aversion. Int. J. Mol. Sci. 21,

2160 (2020).

Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode

reward signals. Nat. Commun. 7, 10503 (2016).

Zhong, W., Li, Y., Feng, Q. & Luo, M. Learning and stress shape the

reward response patterns of serotonin neurons. J. Neurosci. 37,

8863–8875 (2017).

Inaba, K. et al. Neurons in monkey dorsal raphe nucleus code

beginning and progress of step-by-step schedule, reward

expectation, and amount of reward outcome in the reward schedule task. J. Neurosci. 33, 3477–3491 (2013).

Cohen, J. Y., Amoroso, M. W. & Uchida, N. Serotonergic neurons

signal reward and punishment on multiple timescales. eLife 4,

e06346 (2015).

Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent

modulation of neuronal activity in the primate dorsal raphe

nucleus. J. Neurosci. 28, 5331–5343 (2008).

Bromberg-Martin, E. S., Hikosaka, O. & Nakamura, K. Coding of

task reward value in the dorsal raphe nucleus. J. Neurosci. 30,

6262–6272 (2010).

Risinger, F. O. Fluoxetine’s effects on ethanol’s rewarding, aversive and stimulus properties. Life Sci. 61, PL 235–PL 242 (1997).

Subhan, F., Deslandes, P. N., Pache, D. M. & Sewell, R. D. E. Do

antidepressants affect motivation in conditioned place preference? Eur. J. Pharmacol. 408, 257–263 (2000).

Hiranita, T., Soto, P. L., Newman, A. H. & Katz, J. L. Assessment of reinforcing effects of benztropine analogs and their

effects on cocaine self-administration in rats: comparisons

with monoamine uptake inhibitors. J. Pharmacol. Exp. Ther.

329, 677–686 (2009).

Nature Communications | (2022)13:7708

https://doi.org/10.1038/s41467-022-35346-7

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Nutt, D. et al. The other face of depression, reduced positive

affect: the role of catecholamines in causation and cure. J. Psychopharmacol. 21, 461–471 (2007).

Bosker, F. J., Klompmakers, A. A. & Westenberg, H. G. M. Effects of

single and repeated oral administration of fluvoxamine on extracellular serotonin in the median raphe nucleus and dorsal hippocampus of the rat. Neuropharmacology 34, 501–508 (1995).

Romero, L., Bel, N., Artigas, F., de Montigny, C. & Blier, P. Effect of

pindolol on the function of pre- and postsynaptic 5-HT1A receptors: in vivo microdialysis and electrophysiological studies in the

rat brain. Neuropsychopharmacology 15, 349–360 (1996).

McQuade, R. & Sharp, T. Functional mapping of dorsal and median

raphe 5-hydroxytryptamine pathways in forebrain of the rat using

microdialysis. J. Neurochem. 69, 791–796 (1997).

Fletcher, P. J., Ming, Z. H. & Higgins, G. A. Conditioned place

preference induced by microinjection of 8-OH-DPAT into the

dorsal or median raphe nucleus. Psychopharmacology 113,

31–36 (1993).

Dzung Lê, A. et al. Intra-median raphe nucleus (MRN) infusions of

muscimol, a GABA-A receptor agonist, reinstate alcohol seeking in

rats: role of impulsivity and reward. Psychopharmacology 195,

605–615 (2008).

Graeff, F. G. & Silveira Filho, N. G. Behavioral inhibition induced by

electrical stimulation of the median raphe nucleus of the rat.

Physiol. Behav. 21, 477–484 (1978).

Szőnyi, A. et al. Median raphe controls acquisition of negative

experience in the mouse. Science 366, eaay8746 (2019).

Chen, T. W. et al. Ultrasensitive fluorescent proteins for imaging

neuronal activity. Nature 499, 295–300 (2013).

Nagai, T. et al. A variant of yellow fluorescent protein with fast and

efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

Nishitani, N. et al. Manipulation of dorsal raphe serotonergic

neurons modulates active coping to inescapable stress and

anxiety-related behaviors in mice and rats. Neuropsychopharmacology 44, 721–732 (2019).

Tzschentke, T. M. Measuring reward with the conditioned place

preference paradigm: a comprehensive review of drug effects,

recent progress and new issues. Prog. Neurobiol. 56,

613–672 (1998).

Mattis, J. et al. Principles for applying optogenetic tools derived

from direct comparative analysis of microbial opsins. Nat. Methods 9, 159–172 (2012).

Curzon, P., Rustay, N. R. & Browman, K. E. Cued and contextual

fear conditioning for rodents. In: Methods of Behavior Analysis in

Neuroscience 2nd edn (CRC Press, 2009)

Hochbaum, D. R. et al. All-optical electrophysiology in mammalian

neurons using engineered microbial rhodopsins. Nat. Methods 11,

825–833 (2014).

Tanaka, K. F. et al. Expanding the repertoire of optogenetically

targeted cells with an enhanced gene expression system. Cell

Rep. 2, 397–406 (2012).

Ohmura, Y., Tanaka, K. F., Tsunematsu, T., Yamanaka, A. & Yoshioka, M. Optogenetic activation of serotonergic neurons enhances

anxiety-like behaviour in mice. Int. J. Neuropsychopharmacol. 17,

1777–1783 (2014).

Berridge, K. C. Measuring hedonic impact in animals and infants:

microstructure of affective taste reactivity patterns. Neurosci.

Biobehav. Rev. 24, 173–198 (2000).

Dolensek, N., Gehrlach, D. A., Klein, A. S. & Gogolla, N. Facial

expressions of emotion states and their neuronal correlates in

mice. Science 368, 89–94 (2020).

Ables, J. L. et al. Retrograde inhibition by a specific subset of

interpeduncular α5 nicotinic neurons regulates nicotine preference. Proc. Natl Acad. Sci. USA 114, 13012–13017 (2017).

19

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Article

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Wolfman, S. L. et al. Nicotine aversion is mediated by GABAergic

interpeduncular nucleus inputs to laterodorsal tegmentum. Nat.

Commun. 9, 2710 (2018).

Muzerelle, A., Scotto-Lomassese, S., Bernard, J. F., Soiza-Reilly, M.

& Gaspar, P. Conditional anterograde tracing reveals distinct targeting of individual serotonin cell groups (B5–B9) to the forebrain

and brainstem. Brain Struct. Funct. 221, 535–561 (2016).

Fowler, C. D., Lu, Q., Johnson, P. M., Marks, M. J. & Kenny, P. J.

Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471, 597–601 (2011).

Glick, S. D., Ramirez, R. L., Livi, J. M. & Maisonneuve, I. M. 18Methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self-administration in

rats. Eur. J. Pharmacol. 537, 94–98 (2006).

Boulos, L. J. et al. Mu opioid receptors in the medial habenula

contribute to naloxone aversion. Neuropsychopharmacology 45,

247–255 (2020).

Pentkowski, N. S., Blanchard, D. C., Lever, C., Litvin, Y. & Blanchard, R. J. Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur. J. Neurosci. 23,

2185–2196 (2006).

Schumacher, A., Vlassov, E. & Ito, R. The ventral hippocampus, but

not the dorsal hippocampus is critical for learned approachavoidance decision making. Hippocampus 26, 530–542 (2016).

Broussard, G. J. et al. In vivo measurement of afferent activity with

axon-specific calcium imaging. Nat. Neurosci. 21,

1272–1280 (2018).

Sengupta, A. & Holmes, A. A discrete dorsal raphe to basal

amygdala 5-HT circuit calibrates aversive memory. Neuron 103,

489–505.e7 (2019).

Hagsäter, S. M. et al. A complex impact of systemically administered 5-HT2A receptor ligands on conditioned fear. Int. J. Neuropsychopharmacol. 24, 749–757 (2021).

Macedo, C. E., Martinez, R. C. R., Albrechet-Souza, L., Molina, V. A.

& Brandão, M. L. 5-HT2- and D1-mechanisms of the basolateral

nucleus of the amygdala enhance conditioned fear and impair

unconditioned fear. Behav. Brain Res. 177, 100–108 (2007).

Olivier, B. Serotonin: a never-ending story. Eur. J. Pharmacol. 753,

2–18 (2015).

Fernandez, S. P. et al. Constitutive and acquired serotonin deficiency alters memory and hippocampal synaptic plasticity. Neuropsychopharmacology 42, 512–523 (2017).

Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of

negative reward signals in dopamine neurons. Nature 447,

1111–1115 (2007).

Zhu, Y., Wienecke, C. F. R., Nachtrab, G. & Chen, X. A thalamic

input to the nucleus accumbens mediates opiate dependence.

Nature 530, 219–222 (2016).

Zhao-Shea, R., Liu, L., Pang, X., Gardner, P. D. & Tapper, A. R.

Activation of GABAergic neurons in the interpeduncular nucleus

triggers physical nicotine withdrawal symptoms. Curr. Biol. 23,

2327–2335 (2013).

Zaniewska, M., McCreary, A. C., Wydra, K. & Filip, M. Effects of

serotonin (5-HT)2 receptor ligands on depression-like behavior

during nicotine withdrawal. Neuropharmacology 58,

1140–1146 (2010).

Malin, D. et al. Inverse agonists of the 5-HT2A receptor reduce

nicotine withdrawal signs in rats. Neurosci. Lett. 713, 134524 (2019).

Chalmers, D. T. & Watson, S. J. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain—a

combined in situ hybridisation/in vitro receptor autoradiographic

study. Brain Res. 561, 51–60 (1991).

Bruinvels, A. T. et al. Localization of 5-HT1B, 5-HT1Dα, 5-HT1E and

5-HT1F receptor messenger RNA in rodent and primate brain.

Neuropharmacology 33, 367–386 (1994).

Nature Communications | (2022)13:7708

https://doi.org/10.1038/s41467-022-35346-7

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

Jakeman, L. B., To, Z. P., Eglen, R. M., Wong, E. H. & Bonhaus, D. W.

Quantitative autoradiography of 5-HT4 receptors in brains of three

species using two structurally distinct radioligands, [3H]GR113808

and [3H]BIMU-1. Neuropharmacology 33, 1027–1038 (1994).

Nishitani, N. et al. CRISPR/Cas9-mediated in vivo gene editing

reveals that neuronal 5-HT1A receptors in the dorsal raphe nucleus

contribute to body temperature regulation in mice. Brain Res.

1719, 243–252 (2019).

Lima, L. B. et al. Afferent and efferent connections of the interpeduncular nucleus with special reference to circuits involving the

habenula and raphe nuclei. J. Comp. Neurol. 525, 2411–2442 (2017).

Lammel, S. et al. Input-specific control of reward and aversion in

the ventral tegmental area. Nature 491, 212–217 (2012).

de Jong, J. W. et al. A neural circuit mechanism for encoding

aversive stimuli in the mesolimbic dopamine system. Neuron 101,

133–151.e7 (2019).

Wang, H. L. et al. Dorsal raphe dual serotonin-glutamate neurons

drive reward by establishing excitatory synapses on VTA

mesoaccumbens dopamine neurons. Cell Rep. 26,

1128–1142.e7 (2019).

Okaty, B. W. et al. Multi-scale molecular deconstruction of the

serotonin neuron system. Neuron 88, 774–791 (2015).

Ren, J. et al. Single-cell transcriptomes and whole-brain projections of serotonin neurons in the mouse dorsal and median raphe

nuclei. eLife 8, e49424 (2019).

Graeff, F. G., Quintero, S. & Gray, J. A. Median raphe stimulation,

hippocampal theta rhythm and threat-induced behavioral inhibition. Physiol. Behav. 25, 253–261 (1980).

Vertes, R. P., Kinney, G. G., Kocsis, B. & Fortin, W. J. Pharmacological suppression of the median raphe nucleus with serotonin1A

agonists, 8-OH-DPAT and buspirone, produces hippocampal theta

rhythm in the rat. Neuroscience 60, 441–451 (1994).

Kusljic, S., Copolov, D. L. & van den Buuse, M. Differential role of

serotonergic projections arising from the dorsal and median raphe

nuclei in locomotor hyperactivity and prepulse inhibition. Neuropsychopharmacology 28, 2138–2147 (2003).

Kocsis, B., Varga, V., Dahan, L. & Sik, A. Serotonergic neuron

diversity: identification of raphe neurons with discharges timelocked to the hippocampal theta rhythm. Proc. Natl Acad. Sci. USA

103, 1059–1064 (2006).

Huang, W., Ikemoto, S. & Wang, D. V. Median raphe nonserotonergic neurons modulate hippocampal theta oscillations. J.

Neurosci. 42, 1987–1998 (2022).

Ohmura, Y. et al. The serotonergic projection from the median

raphe nucleus to the ventral hippocampus is involved in the

retrieval of fear memory through the corticotropin-releasing factor type 2 receptor. Neuropsychopharmacology 35,

1271–1278 (2010).

Ohmura, Y. et al. Different roles of distinct serotonergic pathways

in anxiety-like behavior, antidepressant-like, and anti-impulsive

effects. Neuropharmacology 167, 107703 (2020).

Yoshida, K., Drew, M. R., Mimura, M. & Tanaka, K. F. Serotoninmediated inhibition of ventral hippocampus is required for sustained goal-directed behavior. Nat. Neurosci. 22, 770–777 (2019).

Ohmura, Y. et al. Serotonin 5-HT7 receptor in the ventral hippocampus modulates the retrieval of fear memory and stressinduced defecation. Int. J. Neuropsychopharmacol. 19, 1–12 (2016).

Luchetti, A. et al. Two functionally distinct serotonergic projections into hippocampus. J. Neurosci. 40, 4936–4944 (2020).

Kobayashi, Y. et al. Genetic dissection of medial habenulainterpeduncular nucleus pathway function in mice. Front. Behav.

Neurosci. 7, 17 (2013).

Xu, C. et al. Medial habenula-interpeduncular nucleus circuit

contributes to anhedonia-like behavior in a rat model of depression. Front. Behav. Neurosci. 12, 238 (2018).

20

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Article

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

Shih, P. Y. et al. Differential expression and function of nicotinic

acetylcholine receptors in subdivisions of medial habenula. J.

Neurosci. 34, 9789–9802 (2014).

McCallum, S. E., Cowe, M. A., Lewis, S. W. & Glick, S. D. α3β4

nicotinic acetylcholine receptors in the medial habenula modulate the mesolimbic dopaminergic response to acute nicotine

in vivo. Neuropharmacology 63, 434–440 (2012).

Salas, R., Sturm, R., Boulter, J. & De Biasi, M. Nicotinic receptors in

the habenulo-interpeduncular system are necessary for nicotine

withdrawal in mice. J. Neurosci. 29, 3014–3018 (2009).

Saleeba, C., Dempsey, B., Le, S., Goodchild, A. & McMullan, S. A

student’s guide to neural circuit tracing. Front. Neurosci. 13,

897 (2019).

Franklin, K. B. J. & Paxinos, G. The Mouse Brain in Stereotaxic

Coordinates 3rd edn (Academic Press, 2007).

Yang, H. et al. Nucleus accumbens subnuclei regulate motivated

behavior via direct inhibition and disinhibition of VTA dopamine

subpopulations. Neuron 97, 434–449.e4 (2018).

Yang, H. et al. Pain modulates dopamine neurons via a

spinal–parabrachial–mesencephalic circuit. Nat. Neurosci. 24,

1402–1413 (2021).

Shikanai, H. et al. Distinct neurochemical and functional properties of GAD67-containing 5-HT neurons in the rat dorsal raphe

nucleus. J. Neurosci. 32, 14415–14426 (2012).

Nakamura, K., Sato, T., Ohashi, A., Tsurui, H. & Hasegawa, H. Role

of a serotonin precursor in development of gut microvilli. Am. J.

Pathol. 172, 333–344 (2008).

Gunaydin, L. A. et al. Natural neural projection dynamics underlying social behavior. Cell 157, 1535–1551 (2014).

Kim, C. K. et al. Simultaneous fast measurement of circuit

dynamics at multiple sites across the mammalian brain. Nat.

Methods 13, 325–328 (2016).

Edelstein, A. D. et al. Advanced methods of microscope control

using μManager software. J. Biol. Methods 1, e10 (2014).

Zhang, T. et al. Activation of GABAergic neurons in the nucleus

accumbens mediates the expression of cocaine-associated

memory. Biol. Pharm. Bull. 41, 1084–1088 (2018).

Zhang, T. et al. Glutamatergic neurons in the medial prefrontal

cortex mediate the formation and retrieval of cocaine-associated

memories in mice. Addict. Biol. 25, e12723 (2020).

Fletcher, P. J., Grottick, A. J. & Higgins, G. A. Differential effects

of the 5-HT2A receptor antagonist M100,907 and the 5-HT2C

receptor antagonist SB242,084 on cocaine-induced locomotor

activity, cocaine self-administration and cocaine-induced

reinstatement of responding. Neuropsychopharmacology 27,

576–586 (2002).

Boutrel, B., Monaca, C., Hen, R., Hamon, M. & Adrien, J. Involvement of 5-HT1A receptors in homeostatic and stress-induced

adaptive regulations of paradoxical sleep: studies in 5-HT1A knockout mice. J. Neurosci. 22, 4686–4692 (2002).

Smith, R. L., Barrett, R. J. & Sanders-Bush, E. Discriminative stimulus properties of 1-(2,5-dimethoxy-4-iodophenyl)−2-aminopropane [(±)DOI] in C57BL/6J mice. Psychopharmacology 166,

61–68 (2003).

Taylor, S. R. et al. GABAergic and glutamatergic efferents of the

mouse ventral tegmental area. J. Comp. Neurol. 522,

3308–3334 (2014).

Nunes-de-Souza, R. L., Canto-de-Souza, A. & Rodgers, R. J. Effects

of intra-hippocampal infusion of WAY-100635 on plus-maze

behavior in mice: influence of site of injection and prior test

experience. Brain Res. 927, 87–96 (2002).

Canto-de-Souza, A., Nunes-de-Souza, R. L. & Rodgers, R. J.

Anxiolytic-like effect of way-100635 microinfusions into the

median (but not dorsal) raphe nucleus in mice exposed to the

Nature Communications | (2022)13:7708

https://doi.org/10.1038/s41467-022-35346-7

105.

106.

107.

108.

109.

plus-maze: influence of prior test experience. Brain Res. 928,

50–59 (2002).

Nair, S. G. et al. Role of dorsal medial prefrontal cortex dopamine

D1-family receptors in relapse to high-fat food seeking induced by

the anxiogenic drug yohimbine. Neuropsychopharmacology 36,

497–510 (2011).

Toda, K. et al. Nigrotectal stimulation stops interval timing in mice.

Curr. Biol. 27, 3763–3770.e3 (2017).

Kirihara, Y., Takechi, M., Kurosaki, K., Kobayashi, Y. & Kurosawa,

T. Anesthetic effects of a mixture of medetomidine, midazolam

and butorphanol in two strains of mice. Exp. Anim. 62,

173–180 (2013).

Grill, H. J. & Berridge, K. C. Taste reactivity measure of neural

palatability. In Progress in Psychobiology and Physiological Psychology. 11, 1–61 (Academic Press, 1985).

Berndt, A., Yizhar, O., Gunaydin, L. A., Hegemann, P. & Deisseroth,

K. Bi-stable neural state switches. Nat. Neurosci. 12,

229–234 (2009).

Acknowledgements

We would like to thank Dr. Hiroyuki Hasegawa for kindly gifting us antitryptophan hydroxylase 2 antibodies. We would like to thank Drs. Akihiro

Yamanaka and Kenji F. Tanaka for kindly providing us with Tph2-tTA and

TetO-ChR2(C128S) mice. We would like to thank Dr. Hitomi Sasamori for

her help in the breeding of transgenic mice. We would like to thank Drs.

Mike Robinson and Kent Berridge for telling us how to conduct the surgery

of oral infusion. We would like to thank Hitoshi Saito for his help in programming. We would like to thank Dr. Masaaki Sato for kindly lending us

an infusion pump. We would like to thank Drs. Katsuyuki Kaneda and

Satoshi Deyama for help on the CPP/CPA tests. We would like to thank Drs.

Atsushi Miyawaki (pCSII-EF-Venus), Adam Cohen (CheRiff; addgene

#51694), Karl Deisseroth (eArchT; addgene #35513), Douglas Kim and

GENIE Project (GCaMP6s; addgene #40753), and Lin Tian (axon-GCaMP6s;

addgene #112008) for providing us the constructs. This work was supported by Grants-in-Aid for Scientific Research from JSPS (to K.Nagayasu

(JP20H04774, JP20K07064), to S.K. (JP18H04616, JP20H00491), to Y.O.

(21K07473), to M.Y. (21H02668), to M.Kondo (JP22K11498), Grant-in-Aid

for Nagai Memorial Research Scholarship from the Pharmaceutical

Society of Japan (to H.K. (N-184403)), Grants-in-Aid for JSPS Fellows

(to H.K. (JP20J12341), Y.N. (JP21J14215), and C.A. (JP21J21091)), AMED (to

S.K. (JP20ak0101088h0003, JP21ak0101153h0001), to M.Kondo

(JP21wm0525026, JP20lm0203007)), Smoking Research Foundation (to

Y.O.), The Shimizu Foundation for Immunology and Neuroscience Grant

(to K.Nagayasu), The Uehara Memorial Foundation (to K.Nagayasu), The

Lotte Foundation (to K.Nagayasu), Takeda Science Foundation (to

M.Kondo), SENSHIN Medical Research Foundation (M.Kondo).

Author contributions

H.K., Y.B., K.Nagayasu, Y.O., and S.K. designed the study. H.K. and Y.B.

contributed equally to this work. H.K. performed fiber photometry

experiments, optogenetic experiments, pharmacological experiments, behavioral experiments, AAV production, histochemical analyses, and data analyses with the help of M.Koda, H.M., C.A., M.H., H.S.,

and M.Kondo. Y.B., K.T., and Y.O. jointly constructed the head-fixed

behavioral setup, and Y.B. and Y.O. performed an optogenetic

intervention on licking behaviors and histochemical analyses. N.N.,

K.Niitani, S.I., and K.K. performed electrophysiological experiments.

N.N., Y.N., M.Koda, C.A., and K.Nagayasu constructed and produced

AAVs. H.K. wrote the paper draft. Y.B., K.Nagayasu, Y.O., and S.K.

jointly edited the paper. K.Nagayasu, Y.O., M.Y., and S.K. jointly

supervised the project.

Competing interests

The authors declare no competing interests.

21

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Article

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-022-35346-7.

Correspondence and requests for materials should be addressed to

Kazuki Nagayasu, Yu Ohmura or Shuji Kaneko.

Peer review information Nature Communications thanks Minmin Luo

and Katsuhiko Miyazaki for their contribution to the peer review of this

work. Peer reviewer reports are available.

Reprints and permissions information is available at

http://www.nature.com/reprints

https://doi.org/10.1038/s41467-022-35346-7

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2022

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nature Communications | (2022)13:7708

22

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る