リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Dorsal raphe serotonergic neurons preferentially reactivate dorsal dentate gyrus cell ensembles associated with positive experience」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Dorsal raphe serotonergic neurons preferentially reactivate dorsal dentate gyrus cell ensembles associated with positive experience

Nagai, Yuma Kisaka, Yuri Nomura, Kento Nishitani, Naoya Andoh, Chihiro Koda, Masashi Kawai, Hiroyuki Seiriki, Kaoru Nagayasu, Kazuki Kasai, Atsushi Shirakawa, Hisashi Nakazawa, Takanobu Hashimoto, Hitoshi Kaneko, Shuji 京都大学 DOI:10.1016/j.celrep.2023.112149

2023.03.28

概要

Major depressive disorder (MDD) is among the most common mental illnesses. Serotonergic (5-HT) neurons are central to the pathophysiology and treatment of MDD. Repeatedly recalling positive episodes is effective for MDD. Stimulating 5-HT neurons of the dorsal raphe nucleus (DRN) or neuronal ensembles in the dorsal dentate gyrus (dDG) associated with positive memories reverses the stress-induced behavioral abnormalities. Despite this phenotypic similarity, their causal relationship is unclear. This study revealed that the DRN 5-HT neurons activate dDG neurons; surprisingly, this activation was specifically observed in positive memory ensembles rather than neutral or negative ensembles. Furthermore, we revealed that dopaminergic signaling induced by activation of DRN 5-HT neurons projecting to the ventral tegmental area mediates an increase in active coping behavior and positive dDG ensemble reactivation. Our study identifies a role of DRN 5-HT neurons as specific reactivators of positive memories and provides insights into how serotonin elicits antidepressive effects.

この論文で使われている画像

関連論文

参考文献

1. Belmaker, R.H., and Agam, G. (2008). Major depressive disorder. N. Engl. J. Med. 358, 55–68. https://doi.org/10.1056/NEJMra073096.

2. Kupfer, D.J., Frank, E., and Phillips, M.L. (2012). Major depressive disor- der: new clinical, neurobiological, and treatment perspectives. Lancet 379, 1045–1055. https://doi.org/10.1016/S0140-6736(11)60602-8.

3. Zill, P., Baghai, T.C., Zwanzger, P., Schu€le, C., Eser, D., Rupprecht, R., Mo¨ ller, H.J., Bondy, B., and Ackenheil, M. (2004). SNP and haplotype anal- ysis of a novel tryptophan hydroxylase isoform (TPH2) gene provide evi- dence for association with major depression. Mol. Psychiatr. 9, 1030– 1036. https://doi.org/10.1038/sj.mp.4001525.

4. Zhang, X., Gainetdinov, R.R., Beaulieu, J.M., Sotnikova, T.D., Burch, L.H., Williams, R.B., Schwartz, D.A., Krishnan, K.R.R., and Caron, M.G. (2005). Loss-of-function mutation in tryptophan hydroxylase-2 identified in unipo- lar major depression. Neuron 45, 11–16. https://doi.org/10.1016/j.neuron. 2004.12.014.

5. Van Den Bogaert, A., Sleegers, K., De Zutter, S., Heyrman, L., Norrback, K.- F., Adolfsson, R., Van Broeckhoven, C., and Del-Favero, J. (2006). Associ- ation of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population. Arch. Gen. Psychiatr. 63, 1103–1110. https://doi.org/10.1001/archpsyc.63.10.1103.

6. Challis, C., Boulden, J., Veerakumar, A., Espallergues, J., Vassoler, F.M., Pierce, R.C., Beck, S.G., and Berton, O. (2013). Raphe GABAergic neurons mediate the acquisition of avoidance after social defeat. J. Neurosci. 33, 13978–13988. https://doi.org/10.1523/JNEUROSCI.2383-13.2013.

7. Sachs, B.D., Ni, J.R., and Caron, M.G. (2015). Brain 5-HT deficiency in- creases stress vulnerability and impairs antidepressant responses following psychosocial stress. Proc. Natl. Acad. Sci. USA 112, 2557– 2562. https://doi.org/10.1073/pnas.1416866112.

8. Natarajan, R., Forrester, L., Chiaia, N.L., and Yamamoto, B.K. (2017). Chronic-stress-induced behavioral changes associated with subregion- selective serotonin cell death in the dorsal raphe. J. Neurosci. 37, 6214– 6223. https://doi.org/10.1523/JNEUROSCI.3781-16.2017.

9. Byerley, W.F., Reimherr, F.W., Wood, D.R., and Grosser, B.I. (1988). Fluoxetine, a selective serotonin uptake inhibitor, for the treatment of out- patients with major depression. J. Clin. Psychopharmacol. 8, 112–115.

10. Muijen, M., Roy, D., Silverstone, T., Mehmet, A., and Christie, M. (1988). A comparative clinical trial of and placebo in depressed outpatients. Acta Psychiatr. Scand. 78, 384–390.

11. Feighner, J.P., and Overø, K. (1999). Multicenter, placebo-controlled, fixed-dose study of citalopram in moderate-to-severe depression. J. Clin. Psychiatr. 60, 824–830. https://doi.org/10.4088/JCP.v60n1204.

12. Mann, J.J. (1999). Role of the serotonergic system in the pathogenesis of major depression and suicidal behavior. Neuropsychopharmacology 21, 99–105.

13. Ko¨ hler, S., Cierpinsky, K., Kronenberg, G., and Adli, M. (2016). The sero- tonergic system in the neurobiology of depression: relevance for novel an- tidepressants. J. Psychopharmacol. 30, 13–22. https://doi.org/10.1177/ 0269881115609072.

14. Teissier, A., Chemiakine, A., Inbar, B., Bagchi, S., Ray, R.S., Palmiter, R.D., Dymecki, S.M., Moore, H., and Ansorge, M.S. (2015). Activity of raphe´ serotonergic neurons controls emotional behaviors. Cell Rep. 13, 1965–1976. https://doi.org/10.1016/j.celrep.2015.10.061.

15. Ren, J., Friedmann, D., Xiong, J., Liu, C.D., Ferguson, B.R., Weerakkody, T., DeLoach, K.E., Ran, C., Pun, A., Sun, Y., et al. (2018). Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175, 472–487.e20. https://doi.org/10.1016/j.cell.2018.07.043.

16. Nishitani, N., Nagayasu, K., Asaoka, N., Yamashiro, M., Andoh, C., Nagai, Y., Kinoshita, H., Kawai, H., Shibui, N., Liu, B., et al. (2019). Manipulation of dorsal raphe serotonergic neurons modulates active coping to inescap- able stress and anxiety-related behaviors in mice and rats. Neuropsycho- pharmacology 44, 721–732. https://doi.org/10.1038/s41386-018-0254-y.

17. Zou, W.-J., Song, Y.-L., Wu, M.-Y., Chen, X.-T., You, Q.-L., Yang, Q., Luo, Z.-Y., Huang, L., Kong, Y., Feng, J., et al. (2020). A discrete serotonergic circuit regulates vulnerability to social stress. Nat. Commun. 11, 4218. https://doi.org/10.1038/s41467-020-18010-w.

18. Bower, G.H. (1987). Commentary on mood and memory. Behav. Res. Ther. 25, 443–455. https://doi.org/10.1016/0005-7967(87)90052-0.

19. Gotlib, I.H., Kasch, K.L., Traill, S., Joormann, J., Arnow, B.A., and John- son, S.L. (2004). Coherence and specificity of information-processing biases in depression and social phobia. J. Abnorm. Psychol. 113, 386–398. https://doi.org/10.1037/0021-843X.113.3.386.

20. Hamilton, J.P., and Gotlib, I.H. (2008). Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biol. Psy- chiatr. 63, 1155–1162. https://doi.org/10.1016/j.biopsych.2007.12.015.

21. Gaddy, M.A., and Ingram, R.E. (2014). A meta-analytic review of mood- congruent implicit memory in depressed mood. Clin. Psychol. Rev. 34, 402–416. https://doi.org/10.1016/j.cpr.2014.06.001.

22. Sin, N.L., and Lyubomirsky, S. (2009). Enhancing well-being and allevi- ating depressive symptoms with positive psychology interventions: a practice-friendly meta-analysis. J. Clin. Psychol. 65, 467–487. https:// doi.org/10.1002/jclp.20593.

23. Schacter, D.L., Eich, J.E., and Tulving, E. (1978). Richard Semon’s theory of memory. J. Verb. Learn. Verb. Behav. 17, 721–743. https://doi.org/10. 1016/S0022-5371(78)90443-7.

24. Frankland, P.W., Josselyn, S.A., and Ko¨ hler, S. (2019). The neurobiological foundation of memory retrieval. Nat. Neurosci. 22, 1576–1585. https://doi. org/10.1038/s41593-019-0493-1.

25. Josselyn, S.A., and Tonegawa, S. (2020). Memory engrams: recalling the past and imagining the future. Science 367, eaaw4325. https://doi.org/ 10.1126/science.aaw4325.

26. Ramirez, S., Liu, X., MacDonald, C.J., Moffa, A., Zhou, J., Redondo, R.L., and Tonegawa, S. (2015). Activating positive memory engrams sup- presses depression-like behaviour. Nature 522, 335–339. https://doi. org/10.1038/nature14514.

27. Zhang, T.R., Larosa, A., Di Raddo, M.E., Wong, V., Wong, A.S., and Wong, T.P. (2019). Negative memory engrams in the hippocampus enhance the susceptibility to chronic social defeat stress. J. Neurosci. 39, 7576– 7590. https://doi.org/10.1523/JNEUROSCI.1958-18.2019.

28. Andoh, C., Nishitani, N., Hashimoto, E., Nagai, Y., Takao, K., Miyakawa, T., Nakagawa, T., Mori, Y., Nagayasu, K., Shirakawa, H., and Kaneko, S. (2019). TRPM2 confers susceptibility to social stress but is essential for behavioral flexibility. Brain Res. 1704, 68–77. https://doi.org/10.1016/j. brainres.2018.09.031.

29. Hochbaum, D.R., Zhao, Y., Farhi, S.L., Klapoetke, N., Werley, C.A., Ka- poor, V., Zou, P., Kralj, J.M., Maclaurin, D., Smedemark-Margulies, N., et al. (2014). All-optical electrophysiology in mammalian neurons using en- gineered microbial rhodopsins. Nat. Methods 11, 825–833. https://doi. org/10.1038/nmeth.3000.

30. Nagai, Y., Takayama, K., Nishitani, N., Andoh, C., Koda, M., Shirakawa, H., Nakagawa, T., Nagayasu, K., Yamanaka, A., and Kaneko, S. (2020). The role of dorsal raphe serotonin neurons in the balance between reward and aversion. Int. J. Mol. Sci. 21, 2160. https://doi.org/10.3390/ ijms21062160.

31. Niu, M., Kasai, A., Tanuma, M., Seiriki, K., Igarashi, H., Kuwaki, T., Nagayasu, K., Miyaji, K., Ueno, H., Tanabe, W., etal. (2022). Claustrum mediates bidirec- tional and reversible control of stress-induced anxiety responses. Sci. Adv. 8, eabi6375–14. https://doi.org/10.1126/sciadv.abi6375.

32. Gunaydin, L.A., Yizhar, O., Berndt, A., Sohal, V.S., Deisseroth, K., and He- gemann, P. (2010). Ultrafast optogenetic control. Nat. Neurosci. 13, 387–392. https://doi.org/10.1038/nn.2495.

33. Li, Y., Zhong, W., Wang, D., Feng, Q., Liu, Z., Zhou, J., Jia, C., Hu, F., Zeng, J., Guo, Q., et al. (2016). Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503. https://doi.org/10. 1038/ncomms10503.

34. Wang, H.L., Zhang, S., Qi, J., Wang, H., Cachope, R., Mejias-Aponte, C.A., Gomez, J.A., Mateo-Semidey, G.E., Beaudoin, G.M.J., Paladini, C.A., et al. (2019). Dorsal raphe dual serotonin-glutamate neurons drive reward by establishing excitatory synapses on VTA mesoaccumbens dopamine neurons. Cell Rep. 26, 1128–1142.e7. https://doi.org/10.1016/j.celrep. 2019.01.014.

35. Bezchlibnyk-Butler, K., Aleksic, I., and Kennedy, S.H. (2000). Citalopram - a review of pharmacological and clinical effects. J. Psychiatry Neurosci. 25, 241–254.

36. Cipriani, A., Furukawa, T.A., Salanti, G., Geddes, J.R., Higgins, J.P., Churchill, R., Watanabe, N., Nakagawa, A., Omori, I.M., McGuire, H., et al. (2009). Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet 373, 746–758. https://doi.org/10.1016/S0140-6736(09)60046-5.

37. Quitkin, F.M., McGrath, P.J., Stewart, J.W., Taylor, B.P., and Klein, D.F. (1996). Can the effects of antidepressants be observed in the first two weeks of treatment? Neuropsychopharmacology 15, 390–394. https:// doi.org/10.1016/0893-133X(95)00272-F.

38. Rutter, J.J., Gundlah, C., and Auerbach, S.B. (1994). Increase in extracel- lular serotonin produced by uptake inhibitors is enhanced after chronic treatment with fluoxetine. Neurosci. Lett. 171, 183–186. https://doi.org/ 10.1016/0304-3940(94)90635-1.

39. Gardier, A.M., Malagie´ , I., Trillat, A.C., Jacquot, C., and Artigas, F. (1996). Role of 5-HT1A autoreceptors in the mechanism of action of serotonin- ergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam. Clin. Pharmacol. 10, 16–27. https://doi.org/10.1111/j. 1472-8206.1996.tb00145.x.dre.

40. Nagayasu, K., Yatani, Y., Kitaichi, M., Kitagawa, Y., Shirakawa, H., Naka- gawa, T., and Kaneko, S. (2010). Utility of organotypic raphe slice cultures to investigate the effects of sustained exposure to selective 5-HT reuptake inhibitors on 5-HT release. Br. J. Pharmacol. 161, 1527–1541. https://doi. org/10.1111/j.1476-5381.2010.00978.x.

41. Asaoka, N., Nishitani, N., Kinoshita, H., Kawai, H., Shibui, N., Nagayasu, K., Shirakawa, H., Nakagawa, T., and Kaneko, S. (2017). Chronic antide- pressant potentiates spontaneous activity of dorsal raphe serotonergic neurons by decreasing GABAB receptor-mediated inhibition of L-type cal- cium channels. Sci. Rep. 7, 13609. https://doi.org/10.1038/s41598-017- 13599-3.

42. Berton, O., McClung, C.A., DiLeone, R.J., Krishnan, V., Renthal, W., Russo, S.J., Graham, D., Tsankova, N.M., Bolanos, C.A., Rios, M., et al. (2006). Essential role of BDNF in the mesolimbic dopamine pathway in so- cial defeat stress. Science 311, 864–868. https://doi.org/10.1126/science. 1120972.

43. Tatsumi, M., Jansen, K., Blakely, R.D., and Richelson, E. (1999). Pharmaco- logical profile of neuroleptics at human monoamine transporters. Eur. J. Pharmacol. 368, 277–283. https://doi.org/10.1016/S0014-2999(99)00005-9.

44. Sa´ nchez, C., Bergqvist, P.B.F., Brennum, L.T., Gupta, S., Hogg, S., Larsen, A., and Wiborg, O. (2003). Escitalopram, the S-(+)-enantiomer of citalopram, is a selective serotonin reuptake inhibitor with potent effects in animal models predictive of antidepressant and anxiolytic activities. Psychopharmacology (Berl) 167, 353–362. https://doi.org/10.1007/ s00213-002-1364-z.

45. Berman, R.M., Cappiello, A., Anand, A., Oren, D.A., Heninger, G.R., Char- ney, D.S., and Krystal, J.H. (2000). Antidepressant effects of ketamine in depressed patients. Biol. Psychiatr. 47, 351–354. https://doi.org/10. 1016/S0006-3223(99)00230-9.

46. Zarate, C.A., Singh, J.B., Carlson, P.J., Brutsche, N.E., Ameli, R., Lucken- baugh, D.A., Charney, D.S., and Manji, H.K. (2006). A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depres- sion. Arch. Gen. Psychiatr. 63, 856–864. https://doi.org/10.1001/arch- psyc.63.8.856.

47. Nishitani, N., Nagayasu, K., Asaoka, N., Yamashiro, M., Shirakawa, H., Na- kagawa, T., and Kaneko, S. (2014). Raphe AMPA receptors and nicotinic acetylcholine receptors mediate ketamine-induced serotonin release in the rat prefrontal cortex. Int. J. Neuropsychopharmacol. 17, 1321–1326. https://doi.org/10.1017/S1461145714000649.

48. Kinoshita, H., Nishitani, N., Nagai, Y., Andoh, C., Asaoka, N., Kawai, H., Shi- bui, N., Nagayasu, K., Shirakawa, H., Nakagawa, T., and Kaneko, S. (2018). Ketamine-induced prefrontal serotonin release is mediated by cholinergic neurons in the pedunculopontine tegmental nucleus. Int. J. Neuropsycho- pharmacol. 21, 305–310. https://doi.org/10.1093/ijnp/pyy007.

49. Tome´ , D.F., Zhang, Y., Aida, T., Sadeh, S., Roy, D.S., and Clopath, C. (2022). Dynamic and selective engrams emerge with memory consolida- tion. Preprint at bioRxiv. https://doi.org/10.1101/2022.03.13.484167.

50. Tye, K.M., Mirzabekov, J.J., Warden, M.R., Ferenczi, E.A., Tsai, H.C., Fin- kelstein, J., Kim, S.Y., Adhikari, A., Thompson, K.R., Andalman, A.S., et al. (2013). Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541. https://doi.org/10. 1038/nature11740.

51. Chaudhury, D., Walsh, J.J., Friedman, A.K., Juarez, B., Ku, S.M., Koo, J.W., Ferguson, D., Tsai, H.C., Pomeranz, L., Christoffel, D.J., et al. (2013). Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536. https://doi.org/10. 1038/nature11713.

52. Golden, S.A., Covington, H.E., Berton, O., and Russo, S.J. (2011). A stan- dardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6, 1183–1191. https://doi.org/10.1038/nprot.2011.361.

53. Hasler, G., Drevets, W.C., Manji, H.K., and Charney, D.S. (2004). Discov- ering endophenotypes for major depression. Neuropsychopharmacology 29, 1765–1781. https://doi.org/10.1038/sj.npp.1300506.

54. Fried, E.I., and Nesse, R.M. (2015). Depression is not a consistent syn- drome: an investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 172, 96–102. https://doi.org/10.1016/j.jad.2014.10.010.

55. Nguyen, T.D., Harder, A., Xiong, Y., Kowalec, K., Ha¨ gg, S., Cai, N., Kuja- Halkola, R., Dalman, C., Sullivan, P.F., and Lu, Y. (2022). Genetic hetero- geneity and subtypes of major depression. Mol. Psychiatr. 27, 1667–1675. https://doi.org/10.1038/s41380-021-01413-6.

56. Orzechowska, A., Zaja˛ czkowska, M., Talarowska, M., and Ga1ecki, P. (2013). Depression and ways of coping with stress: a preliminary study. Med. Sci. Mon. Int. Med. J. Exp. Clin. Res. 19, 1050–1056. https://doi. org/10.12659/MSM.889778.

57. Holubova, M., Prasko, J., Ociskova, M., Grambal, A., Slepecky, M., Mar- ackova, M., Kamaradova, D., and Zatkova, M. (2018). Quality of life and coping strategies of outpatients with a depressive disorder in maintenance therapy – a cross-sectional study. Neuropsychiatric Dis. Treat. 14, 73–82. https://doi.org/10.2147/NDT.S153115.

58. Matos, M.R., Visser, E., Kramvis, I., van der Loo, R.J., Gebuis, T., Zalm, R., Rao-Ruiz, P., Mansvelder, H.D., Smit, A.B., and van den Oever, M.C. (2019). Memory strength gates the involvement of a CREB-dependent cortical fear engram in remote memory. Nat. Commun. 10, 2315. https:// doi.org/10.1038/s41467-019-10266-1.

59. Rafaeli, R., Kreisel, T., Groysman, M., Adamsky, A., and Goshen, I. (2022). Engram stability and maturation during systems consolidation underlies remote memory. Preprint at bioRxiv. https://doi.org/10.1101/2022.07.31. 502182.

60. McHugh, T.J., Jones, M.W., Quinn, J.J., Balthasar, N., Coppari, R., Elm- quist, J.K., Lowell, B.B., Fanselow, M.S., Wilson, M.A., and Tonegawa, S. (2007). Dentate gyrus NMDA receptors mediate rapid pattern separa- tion in the hippocampal network. Science 317, 94–99. https://doi.org/10. 1126/science.1140263.

61. DeNardo, L.A., Liu, C.D., Allen, W.E., Adams, E.L., Friedmann, D., Fu, L., Guenthner, C.J., Tessier-Lavigne, M., and Luo, L. (2019). Temporal evolu- tion of cortical ensembles promoting remote memory retrieval. Nat. Neu- rosci. 22, 460–469. https://doi.org/10.1038/s41593-018-0318-7.

62. Kitamura, T., Ogawa, S.K., Roy, D.S., Okuyama, T., Morrissey, M.D., Smith, L.M., Redondo, R.L., and Tonegawa, S. (2017). Engrams and cir- cuits crucial for systems consolidation of a memory. Science 356, 73–78. https://doi.org/10.1126/science.aam6808.

63. Nonaka, A., Toyoda, T., Miura, Y., Hitora-Imamura, N., Naka, M., Eguchi, M., Yamaguchi, S., Ikegaya, Y., Matsuki, N., and Nomura, H. (2014). Syn- aptic plasticity associated with a memory engram in the basolateral amyg- dala. J. Neurosci. 34, 9305–9309. https://doi.org/10.1523/JNEUROSCI. 4233-13.2014.

64. Terranova, J.I., Yokose, J., Osanai, H., Marks, W.D., Yamamoto, J., Ogawa, S.K., and Kitamura, T. (2022). Hippocampal-amygdala memory circuits govern experience-dependent observational fear. Neuron 110, 1416–1431.e13. https://doi.org/10.1016/j.neuron.2022.01.019.

65. Murugan, M., Jang, H.J., Park, M., Miller, E.M., Cox, J., Taliaferro, J.P., Parker, N.F., Bhave, V., Hur, H., Liang, Y., et al. (2017). Combined social and spatial coding in a descending projection from the prefrontal cortex. Cell 171, 1663–1677.e16. https://doi.org/10.1016/j.cell.2017.11.002.

66. Zhang, T., Yanagida, J., Kamii, H., Wada, S., Domoto, M., Sasase, H., Deyama, S., Takarada, T., Hinoi, E., Sakimura, K., et al. (2020). Glutama- tergic neurons in the medial prefrontal cortex mediate the formation and retrieval of cocaine-associated memories in mice. Addiction Biol. 25, e12723. https://doi.org/10.1111/adb.12723.

67. Franklin, K.B.J., and Paxinos, G. (2007). The Mouse Brain in Stereotaxic Coordinates, 3rd edn (Academic Press).

68. Espallergues, J., Teegarden, S.L., Veerakumar, A., Boulden, J., Challis, C., Jochems, J., Chan, M., Petersen, T., Deneris, E., Matthias, P., et al. (2012). HDAC6 regulates glucocorticoid receptor signaling in serotonin pathways with critical impact on stress resilience. J. Neurosci. 32, 4400–4416. https://doi.org/10.1523/JNEUROSCI.5634-11.2012.

参考文献をもっと見る