リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「High and stable ATP levels prevent aberrant intracellular protein aggregation in yeast」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

High and stable ATP levels prevent aberrant intracellular protein aggregation in yeast

Takaine, Masak Imamura, Hiromi Yoshida, Satoshi 京都大学 DOI:10.7554/eLife.67659

2022

概要

Adenosine triphosphate (ATP) at millimolar levels has recently been implicated in the solubilization of cellular proteins. However, the significance of this high ATP level under physiological conditions and the mechanisms that maintain ATP remain unclear. We herein demonstrated that AMP-activated protein kinase (AMPK) and adenylate kinase (ADK) cooperated to maintain cellular ATP levels regardless of glucose levels. Single-cell imaging of ATP-reduced yeast mutants revealed that ATP levels in these mutants underwent stochastic and transient depletion, which promoted the cytotoxic aggregation of endogenous proteins and pathogenic proteins, such as huntingtin and α-synuclein. Moreover, pharmacological elevations in ATP levels in an ATP-reduced mutant prevented the accumulation of α-synuclein aggregates and its cytotoxicity. The present study demonstrates that cellular ATP homeostasis ensures proteostasis and revealed that suppressing the high volatility of cellular ATP levels prevented cytotoxic protein aggregation, implying that AMPK and ADK are important factors that prevent proteinopathies, such as neurodegenerative diseases.

この論文で使われている画像

参考文献

Arnoux I, Willam M, Griesche N, Krummeich J, Watari H, Offermann N, Weber S, Narayan Dey P, Chen C,

Monteiro O, Buettner S, Meyer K, Bano D, Radyushkin K, Langston R, Lambert JJ, Wanker E, Methner A,

Krauss S, Schweiger S, et al. 2018. Metformin reverses early cortical network dysfunction and behavior changes

in Huntington’s disease. eLife 7:e38744. DOI: https://doi.org/10.7554/eLife.38744, PMID: 30179155

Baryshnikova A. 2016. Systematic Functional Annotation and Visualization of Biological Networks. Cell Systems

2:412–421. DOI: https://doi.org/10.1016/j.cels.2016.04.014, PMID: 27237738

Benaroudj N, Zwickl P, Seemüller E, Baumeister W, Goldberg AL. 2003. ATP hydrolysis by the proteasome

regulatory complex PAN serves multiple functions in protein degradation. Molecular Cell 11:69–78. DOI:

https://doi.org/10.1016/s1097-2765(02)00775-x, PMID: 12535522

Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA, Ganie SA. 2015. Oxidative stress, mitochondrial

dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy =

Biomedecine & Pharmacotherapie 74:101–110. DOI: https://doi.org/10.1016/j.biopha.2015.07.025, PMID:

26349970

Carlson M. 1999. Glucose repression in yeast. Current Opinion in Microbiology 2:202–207. DOI: https://doi.org/​

10.1016/S1369-5274(99)80035-6, PMID: 10322167

Cherry JM, Hong EL, Amundsen C, Balakrishnan R, Binkley G, Chan ET, Christie KR, Costanzo MC, Dwight SS,

Engel SR, Fisk DG, Hirschman JE, Hitz BC, Karra K, Krieger CJ, Miyasato SR, Nash RS, Park J, Skrzypek MS,

Simison M, et al. 2012. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic

Acids Research 40:D700–D705. DOI: https://doi.org/10.1093/nar/gkr1029, PMID: 22110037

Daignan-­Fornier B, Fink GR. 1992. Coregulation of purine and histidine biosynthesis by the transcriptional

activators BAS1 and BAS2. PNAS 89:6746–6750. DOI: https://doi.org/10.1073/pnas.89.15.6746, PMID:

1495962

Denis V, Boucherie H, Monribot C, Daignan-­Fornier B. 1998. Role of the myb-­like protein bas1p in

Saccharomyces cerevisiae: a proteome analysis. Molecular Microbiology 30:557–566. DOI: https://doi.org/10.​

1046/j.1365-2958.1998.01087.x, PMID: 9822821

Takaine et al. eLife 2022;11:e67659. DOI: https://doi.org/10.7554/eLife.67659

22 of 25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

Edelman AM, Blumenthal DK, Krebs EG. 1987. Protein serine/threonine kinases. Annual Review of Biochemistry

56:567–613. DOI: https://doi.org/10.1146/annurev.bi.56.070187.003031, PMID: 2956925

Eftekharzadeh B, Hyman BT, Wegmann S. 2016. Structural studies on the mechanism of protein aggregation in

age related neurodegenerative diseases. Mechanisms of Ageing and Development 156:1–13. DOI: https://doi.​

org/10.1016/j.mad.2016.03.001, PMID: 27005270

Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET, Kelly JW. 2015. Targeting protein

aggregation for the treatment of degenerative diseases. Nature Reviews. Drug Discovery 14:759–780. DOI:

https://doi.org/10.1038/nrd4593, PMID: 26338154

Garcia-­Esparcia P, Hernández-­Ortega K, Ansoleaga B, Carmona M, Ferrer I. 2015. Purine metabolism gene

deregulation in Parkinson’s disease. Neuropathology and Applied Neurobiology 41:926–940. DOI: https://doi.​

org/10.1111/nan.12221, PMID: 25597950

Gauthier S, Coulpier F, Jourdren L, Merle M, Beck S, Konrad M, Daignan-­Fornier B, Pinson B. 2008. Co-­

regulation of yeast purine and phosphate pathways in response to adenylic nucleotide variations. Molecular

Microbiology 68:1583–1594. DOI: https://doi.org/10.1111/j.1365-2958.2008.06261.x, PMID: 18433446

Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J. 2011. The AMPK/

SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. The FEBS Journal 278:3978–

3990. DOI: https://doi.org/10.1111/j.1742-4658.2011.08315.x, PMID: 21883929

Guthrie C, Fink GR. 2002. Guide to Yeast Genetics and Molecular and Cell Biology: Part C. Gulf Professional

Publishing.

Haelterman NA, Yoon WH, Sandoval H, Jaiswal M, Shulman JM, Bellen HJ. 2014. A mitocentric view of

Parkinson’s disease. Annual Review of Neuroscience 37:137–159. DOI: https://doi.org/10.1146/annurev-neuro-​

071013-014317, PMID: 24821430

Hanscho M, Ruckerbauer DE, Chauhan N, Hofbauer HF, Krahulec S, Nidetzky B, Kohlwein SD, Zanghellini J,

Natter K. 2012. Nutritional requirements of the BY series of Saccharomyces cerevisiae strains for optimum

growth. FEMS Yeast Research 12:796–808. DOI: https://doi.org/10.1111/j.1567-1364.2012.00830.x, PMID:

22780918

Hardie DG, Carling D, Carlson M. 1998. The AMP-­activated/SNF1 protein kinase subfamily: metabolic sensors of

the eukaryotic cell? Annual Review of Biochemistry 67:821–855. DOI: https://doi.org/10.1146/annurev.​

biochem.67.1.821, PMID: 9759505

Hardie DG, Schaffer BE, Brunet A. 2016. AMPK: An Energy-­Sensing Pathway with Multiple Inputs and Outputs.

Trends in Cell Biology 26:190–201. DOI: https://doi.org/10.1016/j.tcb.2015.10.013, PMID: 26616193

Hattingen E, Magerkurth J, Pilatus U, Mozer A, Seifried C, Steinmetz H, Zanella F, Hilker R. 2009. Phosphorus

and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced

Parkinson’s disease. Brain 132:3285–3297. DOI: https://doi.org/10.1093/brain/awp293, PMID: 19952056

Hayes MH, Peuchen EH, Dovichi NJ, Weeks DL. 2018. Dual roles for ATP in the regulation of phase separated

protein aggregates in Xenopus oocyte nucleoli. eLife 7:e35224. DOI: https://doi.org/10.7554/eLife.35224,

PMID: 30015615

Hedbacker K, Carlson M. 2008. SNF1/AMPK pathways in yeast. Frontiers in Bioscience 13:2408–2420. DOI:

https://doi.org/10.2741/2854, PMID: 17981722

Herzig S, Shaw RJ. 2018. AMPK: guardian of metabolism and mitochondrial homeostasis. Nature Reviews.

Molecular Cell Biology 19:121–135. DOI: https://doi.org/10.1038/nrm.2017.95, PMID: 28974774

Hoyle NP, Castelli LM, Campbell SG, Holmes LEA, Ashe MP. 2007. Stress-­dependent relocalization of

translationally primed mRNPs to cytoplasmic granules that are kinetically and spatially distinct from P-­bodies.

The Journal of Cell Biology 179:65–74. DOI: https://doi.org/10.1083/jcb.200707010, PMID: 17908917

Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A, Parker R. 2016. ATPase-­Modulated Stress Granules Contain

a Diverse Proteome and Substructure. Cell 164:487–498. DOI: https://doi.org/10.1016/j.cell.2015.12.038,

PMID: 26777405

Janke C, Magiera MM, Rathfelder N, Taxis C, Reber S, Maekawa H, Moreno-­Borchart A, Doenges G, Schwob E,

Schiebel E. 2004. A versatile toolbox for PCR-­based tagging of yeast genes: new fluorescent proteins, more

markers and promoter substitution cassettes. Yeast (Chichester, England) 21:947–962. DOI: https://doi.org/10.​

1002/yea.1142

Janssen E, Dzeja PP, Oerlemans F, Simonetti AW, Heerschap A, Haan A, Rush PS, Terjung RR, Wieringa B,

Terzic A. 2000. Adenylate kinase 1 gene deletion disrupts muscle energetic economy despite metabolic

rearrangement. The EMBO Journal 19:6371–6381. DOI: https://doi.org/10.1093/emboj/19.23.6371, PMID:

11101510

Kaganovich D, Kopito R, Frydman J. 2008. Misfolded proteins partition between two distinct quality control

compartments. Nature 454:1088–1095. DOI: https://doi.org/10.1038/nature07195, PMID: 18756251

Kirkwood TBL, Korolchuk VI, Josefson R, Andersson R, Nyström T. 2017. How and why do toxic conformers of

aberrant proteins accumulate during ageing? Essays in Biochemistry 61:317–324. DOI: https://doi.org/10.1042/​

EBC20160085, PMID: 28539486

Kruegel U, Robison B, Dange T, Kahlert G, Delaney JR, Kotireddy S, Tsuchiya M, Tsuchiyama S, Murakami CJ,

Schleit J, Sutphin G, Carr D, Tar K, Dittmar G, Kaeberlein M, Kennedy BK, Schmidt M. 2011. Elevated

proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae. PLOS Genetics 7:e1002253.

DOI: https://doi.org/10.1371/journal.pgen.1002253, PMID: 21931558

Lashuel HA, Overk CR, Oueslati A, Masliah E. 2013. The many faces of α-synuclein: from structure and toxicity to

therapeutic target. Nature Reviews. Neuroscience 14:38–48. DOI: https://doi.org/10.1038/nrn3406, PMID:

23254192

Takaine et al. eLife 2022;11:e67659. DOI: https://doi.org/10.7554/eLife.67659

23 of 25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

Ljungdahl PO, Daignan-­Fornier B. 2012. Regulation of amino acid, nucleotide, and phosphate metabolism in

Saccharomyces cerevisiae. Genetics 190:885–929. DOI: https://doi.org/10.1534/genetics.111.133306, PMID:

22419079

Marini G, Nüske E, Leng W, Alberti S, Pigino G. 2020. Reorganization of budding yeast cytoplasm upon energy

depletion. Molecular Biology of the Cell 31:1232–1245. DOI: https://doi.org/10.1091/mbc.E20-02-0125, PMID:

32293990

Martinez-­Ortiz C, Carrillo-­Garmendia A, Correa-­Romero BF, Canizal-­García M, González-­Hernández JC,

Regalado-­Gonzalez C, Olivares-­Marin IK, Madrigal-­Perez LA. 2019. SNF1 controls the glycolytic flux and

mitochondrial respiration. Yeast (Chichester, England) 36:487–494. DOI: https://doi.org/10.1002/yea.3399,

PMID: 31074533

Meriin AB, Zhang X, He X, Newnam GP, Chernoff YO, Sherman MY. 2002. Huntington toxicity in yeast model

depends on polyglutamine aggregation mediated by a prion-­like protein Rnq1. The Journal of Cell Biology

157:997–1004. DOI: https://doi.org/10.1083/jcb.200112104, PMID: 12058016

Mochel F, Durant B, Meng X, O’Callaghan J, Yu H, Brouillet E, Wheeler VC, Humbert S, Schiffmann R, Durr A.

2012a. Early alterations of brain cellular energy homeostasis in Huntington disease models. The Journal of

Biological Chemistry 287:1361–1370. DOI: https://doi.org/10.1074/jbc.M111.309849, PMID: 22123819

Mochel F, N’Guyen TM, Deelchand D, Rinaldi D, Valabregue R, Wary C, Carlier PG, Durr A, Henry PG. 2012b.

Abnormal response to cortical activation in early stages of Huntington disease. Movement Disorders 27:907–

910. DOI: https://doi.org/10.1002/mds.25009, PMID: 22517114

Nakano M, Imamura H, Sasaoka N, Yamamoto M, Uemura N, Shudo T, Fuchigami T, Takahashi R, Kakizuka A.

2017. ATP Maintenance via Two Types of ATP Regulators Mitigates Pathological Phenotypes in Mouse Models

of Parkinson’s Disease. EBioMedicine 22:225–241. DOI: https://doi.org/10.1016/j.ebiom.2017.07.024, PMID:

28780078

Outeiro TF, Lindquist S. 2003. Yeast cells provide insight into alpha-­synuclein biology and pathobiology. Science

(New York, N.Y.) 302:1772–1775. DOI: https://doi.org/10.1126/science.1090439, PMID: 14657500

Parsell DA, Kowal AS, Lindquist S. 1994. Saccharomyces cerevisiae Hsp104 protein Purification and

characterization of ATP-­induced structural changes. The Journal of Biological Chemistry 269:4480–4487 PMID:

8308017.,

Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y, Hyman AA. 2017. ATP as a biological hydrotrope.

Science (New York, N.Y.) 356:753–756. DOI: https://doi.org/10.1126/science.aaf6846, PMID: 28522535

Pathak D, Berthet A, Nakamura K. 2013. Energy failure: does it contribute to neurodegeneration? Annals of

Neurology 74:506–516. DOI: https://doi.org/10.1002/ana.24014, PMID: 24038413

Persson LB, Ambati VS, Brandman O. 2020. Cellular Control of Viscosity Counters Changes in Temperature and

Energy Availability. Cell 183:1572-1585.. DOI: https://doi.org/10.1016/j.cell.2020.10.017, PMID: 33157040

Piotrowski JS, Li SC, Deshpande R, Simpkins SW, Nelson J, Yashiroda Y, Barber JM, Safizadeh H, Wilson E,

Okada H, Gebre AA, Kubo K, Torres NP, LeBlanc MA, Andrusiak K, Okamoto R, Yoshimura M,

DeRango-­Adem E, van Leeuwen J, Shirahige K, et al. 2017. Functional annotation of chemical libraries across

diverse biological processes. Nature Chemical Biology 13:982–993. DOI: https://doi.org/10.1038/nchembio.​

2436, PMID: 28759014

Poirier MA, Jiang H, Ross CA. 2005. A structure-­based analysis of huntingtin mutant polyglutamine aggregation

and toxicity: evidence for A compact beta-­sheet structure. Human Molecular Genetics 14:765–774. DOI:

https://doi.org/10.1093/hmg/ddi071, PMID: 15689354

Pu Y, Li Y, Jin X, Tian T, Ma Q, Zhao Z, Lin S-­Y, Chen Z, Li B, Yao G, Leake MC, Lo C-­J, Bai F. 2019. ATP-­

Dependent Dynamic Protein Aggregation Regulates Bacterial Dormancy Depth Critical for Antibiotic

Tolerance. Molecular Cell 73:143-156.. DOI: https://doi.org/10.1016/j.molcel.2018.10.022, PMID: 30472191

R Development Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna, Austria. R

Foundation for Statistical Computing. http://www.r-project.org

Rotermund C, Machetanz G, Fitzgerald JC. 2018. The Therapeutic Potential of Metformin in Neurodegenerative

Diseases. Frontiers in Endocrinology 9:400. DOI: https://doi.org/10.3389/fendo.2018.00400, PMID: 30072954

Schindelin J, Arganda-­Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,

Schmid B, Tinevez J-­Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-­source

platform for biological-­image analysis. Nature Methods 9:676–682. DOI: https://doi.org/10.1038/nmeth.2019,

PMID: 22743772

Seo AY, Lau PW, Feliciano D, Sengupta P, Gros MAL, Cinquin B, Larabell CA, Lippincott-­Schwartz J. 2017. AMPK

and vacuole-­associated Atg14p orchestrate μ-lipophagy for energy production and long-­term survival under

glucose starvation. eLife 6:e21690. DOI: https://doi.org/10.7554/eLife.21690, PMID: 28394250

Sharma N, Brandis KA, Herrera SK, Johnson BE, Vaidya T, Shrestha R, DebBurman SK. 2006. α-synuclein budding

yeast model. Journal of Molecular Neuroscience 28:161–178. DOI: https://doi.org/10.1385/JMN:28:2:161,

PMID: 16679556

Sridharan S, Kurzawa N, Werner T, Günthner I, Helm D, Huber W, Bantscheff M, Savitski MM. 2019. Proteome-­

wide solubility and thermal stability profiling reveals distinct regulatory roles for ATP. Nature Communications

10:1155. DOI: https://doi.org/10.1038/s41467-019-09107-y, PMID: 30858367

Takaine M. 2019. QUEEN-­based Spatiotemporal ATP Imaging in Budding and Fission Yeast. Bio-­Protocol

9:e3320. DOI: https://doi.org/10.21769/BioProtoc.3320, PMID: 33654827

Takaine M, Ueno M, Kitamura K, Imamura H, Yoshida S. 2019. Reliable imaging of ATP in living budding and

fission yeast. Journal of Cell Science 132:jcs230649. DOI: https://doi.org/10.1242/jcs.230649, PMID: 30858198

Takaine et al. eLife 2022;11:e67659. DOI: https://doi.org/10.7554/eLife.67659

24 of 25

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Cell Biology

Research article

Tanaka K, Waxman L, Goldberg AL. 1983. ATP serves two distinct roles in protein degradation in reticulocytes,

one requiring and one independent of ubiquitin. The Journal of Cell Biology 96:1580–1585. DOI: https://doi.​

org/10.1083/jcb.96.6.1580, PMID: 6304111

Tofaris GK, Kim HT, Hourez R, Jung JW, Kim KP, Goldberg AL. 2011. Ubiquitin ligase Nedd4 promotes

α-synuclein degradation by the endosomal–lysosomal pathway. PNAS 108:17004–17009. DOI: https://doi.org/​

10.1073/pnas.1109356108, PMID: 21953697

Usaj M, Tan Y, Wang W, VanderSluis B, Zou A, Myers CL, Costanzo M, Andrews B, Boone C. 2017. ​TheCellMap.​

org: A Web-­Accessible Database for Visualizing and Mining the Global Yeast Genetic Interaction Network. G3:

Genes, Genomes, Genetics 7:1539–1549. DOI: https://doi.org/10.1534/g3.117.040220, PMID: 28325812

Wijayanti I, Watanabe D, Oshiro S, Takagi H. 2015. Isolation and functional analysis of yeast ubiquitin ligase Rsp5

variants that alleviate the toxicity of human α-synuclein. The Journal of Biochemistry 157:251–260. DOI:

https://doi.org/10.1093/jb/mvu069

Willingham S, Outeiro TF, DeVit MJ, Lindquist SL, Muchowski PJ. 2003. Yeast Genes That Enhance the Toxicity of

a Mutant Huntingtin Fragment or α-Synuclein. Science 302:1769–1772. DOI: https://doi.org/10.1126/science.​

1090389, PMID: 14657499

Wilson WA, Hawley SA, Hardie DG. 1996. Glucose repression/derepression in budding yeast: SNF1 protein

kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP

ratio. Current Biology: CB 6:1426–1434. DOI: https://doi.org/10.1016/S0960-9822(96)00747-6

Xiao B, Heath R, Saiu P, Leiper FC, Leone P, Jing C, Walker PA, Haire L, Eccleston JF, Davis CT, Martin SR,

Carling D, Gamblin SJ. 2007. Structural basis for AMP binding to mammalian AMP-­activated protein kinase.

Nature 449:496–500. DOI: https://doi.org/10.1038/nature06161, PMID: 17851531

Xie Y, Varshavsky A. 2001. RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: a

negative feedback circuit. PNAS 98:3056–3061. DOI: https://doi.org/10.1073/pnas.071022298, PMID:

11248031

Yaginuma H, Kawai S, Tabata KV, Tomiyama K, Kakizuka A, Komatsuzaki T, Noji H, Imamura H. 2014. Diversity in

ATP concentrations in a single bacterial cell population revealed by quantitative single-­cell imaging. Scientific

Reports 4:6522. DOI: https://doi.org/10.1038/srep06522, PMID: 25283467

Takaine et al. eLife 2022;11:e67659. DOI: https://doi.org/10.7554/eLife.67659

25 of 25

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る