リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「肥満が心機能に与える影響についての検討」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

肥満が心機能に与える影響についての検討

澤田, 直子 東京大学 DOI:10.15083/0002002402

2021.10.13

概要

心不全は悪性腫瘍に次いで本邦の死因第2位である。左室収縮の保持された心不全はHeart failure with preserved ejection fraction (HFpEF)と呼ばれ、その主な病態は、左室拡張障害と考えられている。HFpEFは心不全患者全体の約半数を占めるが、左室収縮の低下した心不全と異なり、死亡率や罹患率を低下させるような治療法で確立されたものはいまだない。そのため、臨床像を明らかにして、予防することが重要である。

肥満はHFpEFの重要なリスクファクターであることが報告されている。肥満、特に内臓脂肪蓄積と様々な健康障害との関連が知られており、その機序に内臓脂肪蓄積に伴う各種アディポサイトカインの産生・分泌異常の関与が疑われている。そのうちアディポネクチンは、心肥大抑制、線維化抑制、抗酸化、抗動脈硬化、抗炎症などの心保護作用を持ち、内臓脂肪蓄積に伴い産生が減少する善玉アディポサイトカインである。低アディポネクチン血症群で心血管イベントが多いという報告があるが、左室拡張能と内臓脂肪、アディポネクチンの関連を調べた研究は少ない。研究1では当院検診部を受診した心疾患のない健常人213名を対象に、内臓脂肪蓄積が左室拡張能にどの程度影響するのか、さらにその機序に低アディポネクチン血症が関連するかどうかについて検討した。一般的な身体所見や臨床背景、血液検査項目に加え、血清アディポネクチン総量を測定した。左室拡張能は経胸壁心エコーを用いて、左室流入血流速波形(急速流入期血流速波形(E波)と心房収縮期血流速波形(A波)の比であるE/A)と、僧帽弁輪拡張早期運動速度(e’)と、Eをe’で除した左室充満圧の指標であるE/e’の3項目を評価した。内臓脂肪は腹部CTで定量評価した。その結果、内臓脂肪増加は左室拡張能指標の低下と相関し(e’;r=-0.39、p<0.001、E/A;r=-0.38、p<0.001、E/e’;r=0.29、p<0.001)、内臓脂肪面積は年齢と並んで左室拡張能の独立規定因子であった(e’;β=-017、p=0.025、E/e’;β=0.16、p=0.012、E/A;β=-0.17、p=0.019)。一方で、アディポネクチンは左室拡張能指標との相関関係は認めなかった。心疾患のない健常人において内臓脂肪増加は左室拡張能低下と関わるということが判明したが、アディポネクチンはその主体ではなかった。その要因として、内臓脂肪はアディポネクチンのみならず他のアディポサイトカインも分泌しており、それらとのバランスや相互作用が影響している可能性が考えられる。内臓脂肪型肥満の進行に伴い、善玉アディポサイトカインであるアディポネクチンは低下し、悪玉アディポサイトカインであるTNF-αやMCP-1は上昇する。それらが脂肪組織の慢性炎症やインスリン抵抗性を惹起し、各種アディポサイトカインの血管への作用が加わることで、糖尿病や高血圧、脂質異常症が生じると考えられている。様々なアディポサイトカインを介した機序を考慮する必要がある。

また、近年右室機能が着目されている。回転楕円形である左室と比較して、右室は三角錐状の複雑な形態をしており、また低圧環境のため周囲の影響を受けやすいことから、これまで評価が困難とされてきた。近年画像診断の進歩に伴い、心臓MRIや経胸壁心エコーでの右室機能評価が可能となり、右室機能が様々な心疾患の予後規定因子であることが判明してきた。最近ではHFpEFにおいて右室機能が死亡率や再入院率に関連していたという報告もある。右室機能評価法のゴールデンスタンダードは心臓MRIであるが、経胸壁心エコーの右室機能指標は心臓MRIの計測値と良好な相関関係を示し、その中でもRVLS(right ventricular longitudinal strain)が最も有用であったとの報告がある。strainとは、組織の歪み・変形といった意味であり、Bモードエコー画像上の小斑点(speckle)を追跡することで、局所心筋自体の伸び縮みを評価できる。健常者において長軸方向のstrainは負の値をとり、その絶対値が大きいほど良好な収縮を示すことになる。虚血性心疾患や心不全患者において、収縮期のピーク速度であるRVLSの絶対値が低い群は予後不良であったとの報告がある。また、肥満が進行すると、右室収縮能が低下し右室容積が大きくなるとともに、RVLSの絶対値は小さくなることが報告されている。研究2では、当院検診部を受診した心疾患のない健常人102名を対象に、内臓脂肪蓄積が潜在的な右室機能低下に関与するかどうかを検討した。内臓脂肪は腹部CTで定量評価し、右室機能は経胸壁心エコーでRVLSに加え、従来指標である三尖弁輪の収縮期移動距離(TAPSE: tricuspid annular plane systolic excursion)、右室面積変化率(RVFAC: right ventricular fractional area change)、三尖弁収縮期弁輪部移動距離速度(RV-s’)の4項目を評価した。その結果、内臓脂肪の蓄積に伴い右室機能指標は低下し(RVLS;r=0.36、p<0.001、TAPSE;r=-0.24、p=0.015、RVFAC;r=-0.19、p=0.050、RV-s’;r=-0.22、p=0.024)、さらに心血管リスクとは独立して、内臓脂肪は右室機能に影響を与えていることが示された(内臓脂肪面積;β=0.27、p=0.0062)。アディポネクチンは右室機能指標と有意な相関関係は認めなかった。今回の結果より、内臓脂肪蓄積の影響は、これまで報告されていた左室だけでなく、右室にも影響を及ぼすことが示唆された。その機序として、先に述べたような内臓脂肪蓄積に伴う慢性炎症や、各種アディポサイトカインの異常分泌による耐糖能異常、血圧上昇、動脈硬化などが考えられるが、今回検討したアディポネクチンとは明らかな関連がなく、様々な因子を総合的に検討する必要があるといえる。

内臓脂肪を減少させる治療を行うことで、左室拡張能や右室機能を改善することができる可能性がある。今後は内臓脂肪量の継時的な変化と、左室拡張能指標や右室機能指標の関係を前向きに追跡することで、心疾患の予防や治療法の発見に貢献できるかもしれない。また、肥満の進行により、アディポネクチンだけでなく様々なアディポサイトカインの分泌異常が生じるため、それらの検討も行うことで内臓脂肪蓄積による心疾患増加の機序に迫ることが出来る可能性がある。

この論文で使われている画像

参考文献

[1] Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, Fonarow GC, Geraci SA, Horwich T, Januzzi JL, Johnson MR, Kasper EK, Levy WC, Masoudi FA, McBride PE, McMurray JJ, Mitchell JE, Peterson PN, Riegel B, Sam F, Stevenson LW, Tang WH, Tsai EJ, Wilkoff BL. 2013 ACCF/AHA guideline for the management of heart failure: A report of the American college of cardiology foundation/american heart association task force on practice guidelines. Journal of the American College of Cardiology. 62(16):e147–e239 (2013).

[2] Shah SJ, Gheorghiade M. Heart failure with preserved ejection fraction: treat now by treating comorbidities. Journal of the American Medical Association. 300(4):431-433 (2008).

[3] Daimon M, Watanabe H, Abe Y, Hirata K, Hozumi T, Ishii K, Ito H, Iwakura K, Izumi C, Matsuzkaki M, Minagoe S, Abe H, Murata K, Nakatani S, Negishi K, Yoshida K, Tanabe K, Tanaka N, Tokai K, Yoshikawa J, JAMP Study Investigators. Normal values of echocardiographic parameters in relation to age in a healthy Japanese population: the JAMP study. Circulation Journal. 72(11):1859–1866 (2008).

[4] Daimon M, Watanabe H, Abe Y, Hirata K, Hozumi T, Ishii K, Ito H, Iwakura K, Izumi C, Matsuzaki M, Minagoe S, Abe H, Murata K, Nakatani S, Negishi K, Yoshida K, Tanabe K, Tanaka N, Tokai K, Yoshikawa J, Japanease Normal Values for Echocardiographic Measurements Project (JAMP) Study Investigators. Gender differences in age-related changes in left and right ventricular geometries and functions. Echocardiography of a healthy subject group. Circulation Journal. 75(12):2840–2846 (2011).

[5] Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. Journal of the American College of Cardiology. 62(4):263–271 (2013).

[6] Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. The New England Journal of Medicine. 355(3):251–259 (2006).

[7] Lee SL, Daimon M, Di Tullio MR, Homma S, Nakao T, Kawata T, Kimura K, Shinozaki T, Hirokawa M, Kato TS, Mizuno Y, Watanabe M, Yatomi Y, Yamazaki T, Komuro I. Relationship of Left Ventricular Diastolic Function to Obesity and Overweight in a Japanese Population With Preserved Left Ventricular Ejection Fraction. Circulation Journal. 80(9):1951–1956 (2016).

[8] Kenchaiah S, Evans JC, Levy D, Wilson OW, Benjamin EJ, Larson MG, Kannel WB, Vasan RS. Obesity and the risk of heart failure. The New England Journal of Medicine. 347(5):305–13 (2002).

[9] Russo C, Jin Z, Homma S, Rundek T, Elkind MS, Sacco RL, Di Tullio MR. Effect of obesity and overweight on left ventricular diastolic function: a community-based study in an elderly cohort. Journal of the American College of Cardiology. 57(12):1368–1374 (2011).

[10] Influence of epicardial and visceral fat on left ventricular diastolic and systolic functions in patients after myocardial infarction. Fontes-Carvalho R, Fontes-Oliveira M, Sampaio F, Mancio J, Bettencourt N, Teixeira M, Rocha Goncalves F, Gama V, Leite- Moreira A. American Journal of Cardiology. 114(11):1663-1669 (2014).

[11] Mahabadi AA, Massaro JM, Rosito GA, Levy D, Murabito JM, Wolf PA, O’Donnell CJ, Fox CS, Hoffmann U. Association of pericardial fat, intrathoracic fat, and visceral abdominal fat with cardiovascular disease burden: the Framingham Heart Study. European Heart Journal. 30(7) 850-856 (2009).

[12] Park J, Kim NH, Kim SH, Kim JS, Kim YH, Lim HE, Kim EJ, Na JO, Cho GY, Baik I, Kim DM, Choi DS, Lee SK, Shin C. Visceral adiposity and skeletal muscle mass are independently and synergistically associated with left ventricular structure and function: The Korean Genome and Epidemiology Study. International Journal of Cardiology. 176(3):951–955 (2014).

[13] Ichikawa R, Daimon M, Miyazaki T, Kawata T, Miyazaki S, Maruyama M, Chiang SJ, Suzuki H, Ito C, Sato F, Watada H, Daida H. Influencing factors on cardiac structure and function beyond glycemic control in patients with type 2 diabetes mellitus. Cardiovascular Diabetology. 12:38 (2013).

[14] Wu CK, Lee JK, Wu YF, Tsai CT, Chiang FT, Hwang JJ, Lin JL, Hung KY, Huang JW, Lin JW. Left ventricular diastolic dysfunction in peritoneal dialysis: a forgotten risk factor. Medicine (Baltimore). 94(20):e819 (2015).

[15] Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Hovat P, Larson MG, Keaney JF Jr, Meigs JB, Lipinska I, Kathiresan S, Murabito JM, O’Donnell CJ, Benjamin EJ, Fox CS. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: The Framingham Heart Study. Circulation. 116(11):1234–1241 (2007).

[16] Ouchi N, Shibata R, Walsh K. Cardioprotection by adiponectin. Trends in Cardiovascular Medicine. 16(5):141–146 (2006).

[17] Francisco C, Neves JS, Falcão-Pires I, Leite-Moreira A. Can Adiponectin Help us to Target Diastolic Dysfunction? Cardiovascular. Drugs and Therapy. 30(6):635-644 (2016).

[18] Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M, Nagai M, Matsuzawa Y, Funahashi T. Adiponectin as a biomarker of the metabolic syndrome. Circulation Journal. 68(11):975–981 (2004).

[19] Unno K, Shibata R, Izawa H, Hirashiki A, Murase Y, Yamada T, Kobayashi M, Noda A, Nagata K, Ouchi N, Murohara T. Adiponectin acts as a positive indicator of left ventricular diastolic dysfunction in patients with hypertrophic cardiomyopathy. Heart. 96(5):357–361 (2010).

[20] Negi SI, Jeong EM, Shukrullah I, Raicu M, Dudley Jr SC. Association of low plasma adiponectin with early diastolic dysfunction. Congestive Heart Failure. 18(4):187–191 (2012).

[21] Fontes-Carvalho R, Pimenta J, Bettencourt P, Leite-Moreira A, Azevedo A. Association between plasma leptin and adiponectin levels and diastolic function in the general population. Expert Opinion on Therapeutic Targets. 19(10):1283-1291 (2015).

[22] Voelkel, NF, Quaife RA, Leinwand LA, Barst RJ, McGoon MD, Meldrum DR, Dupuis J, Long CS, Rubin LJ, Smart FW, Suzuki YJ, Gladwin M, Denholm EM, Gail DB; National Heart, Lung, and Blood Institute Working Group on Cellular and Molecular Mechanisums of Right Heart Failure. Right ventricular fuction and failure: report of a National Heart, Lung, and Blood Institute working group on cellular and molecular mechanisms of right heart failure. Circulation. 114(17):1883-1891 (2006).

[23] Meyer P, Filippatos GS, Ahmed MI, Iskandrian AE, Bittner V, Perry GJ, White M, Aban IB, Mujib M, Dell’Italia LJ, Ahmed A. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation.121(2):252-258.(2010)

[24] Therrien J, Provost Y, Merchant N, Williams W, Colman J, Webb G. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. American Journal of Cardiology. 95(6):779-782 (2005).

[25] van de Veerdonk MC, Kind T, Marcus JT, Mauritz GJ, Heymans MW, Bogaard HJ, Boonstra A, Marques KM, Westerhof N, Vonk-Noordegraaf A. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension. Journal of the American College of Cardiology. 58(24):2511-2519 (2011).

[26] Gorter TM, Hoendermis ES, van Veldhuisen DJ, Voors AA, Lam CS, Geelhoed B, Willems TP, van Melle JP. Right ventricular dysfunction in heart failure with preserved ejection fraction: a systematic review and meta-analysis. European Journal of Heart Failure. 18(12):1472-1487 (2016).

[27] Guazzi M, Dixon D, Labaate V, Beussink-Nelson L, Bandera F, Cuttica MJ, Shah SJ. RV contractile function and its coupling to pulmonary circulation in heart failure with preserved ejection fraction: stratification of clinical phenotypes and outcomes. Journal of the American College of Cardiology Cardiovascular Imaging. 10(10):1211-1221 (2017).

[28] Mohammed SF, Hussain I, AbouEzzeddine OF, Takahama H, Kwon SH, Forfia P, Roger VL, Redfield MM. Right ventricular function in heart failure with preserved ejection fraction: a community-based study. Circulation. 130(25):2310-2320 (2014).

[29] Chahal H, McClelland RL, Tandri H, Jain A, Turkbey EB, Hundley WG, Barr RG, Kizer J, Lima JAC, Bluemke DA, Kawut SM. Obesity and right ventricular structure and function: the MESA-Right Ventricle Study. Chest. 141(2):388-395 (2012).

[30] Rider OJ, Petersen SE, Francis JM, Ali MK, Hudsmith LE, Robinson MR, Clarke K, Neubauer S. Ventricular hypertrophy and cavity dilatation in relation to body mass index in woman with uncomplicated obesity. Heart. 97(3):203-208 (2011).

[31] Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T, Flachskampf FA, Gillebert TC, Klein AL, Lancellotti P, Marino P, Oh JK, Popescu BA, Waggoner AD. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography. 29(4):277-314 (2016).

[32] Yamada H, Klein AL. Diastology 2010:clinical approach to diastolic heart failure. Journal of Echocardiography. 8(3):65-79 (2010).

[33] Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinonoes MA. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. Journal of the American College of Cardiology. 30(6):1527-1533 (1997).

[34] Daniel A. Morris, Maximilian Krisper, Satoshi Nakatani, Clemens Kohncke, Yutaka Otsuji, Evgeny Belyavskiy, Aravind K. Radha Krishnan, Martin Kropf, Engin Osmanoglou, Leif-Hendrik Boldt, Florian Blaschke, Frank Edelmann, Wilhelm Haverkamp, Carsten Tschope, Elisabeth Pieske-Kraigher, Burkert Pieske, Masaaki Takeuchi. Normal range and usefulness of right ventricular systolic strain to detect subtle right ventricular systolic abnormalities in patients with heart failure: a multicenter study. European Heart Journal Cardiovascular Imaging. 18:212-223 (2017).

[35] Pajvani UB, Hawkins M, Combs TP, Rajala MW, Doebber T, Berger JP, Wagner JA, Wu M, Knopps A, Xiang AH, Utzschneider KM, Kahn SE, Olefsky JM, Buchanan TA, Scherer PE. Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. Journal of Biochemical. 279(13):12152-12162 (2004).

[36] Japanease Committee for Diagnostic Criteria for Metabolic Syndrome. Committee on Evaluation of Diagnostic Standards for Metabolic Syndrome: Definition and the diagnostic standards for metabolic syndrome. Nippon Naika Gakkai Zasshi. 94(4):794–809 (2005)

[37] Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I, Reichek N. Echocardiographic assessment of left ventricular hypertrophy: comparison to necropsy findings. American Journal of Cardiology. 57(6):450–458 (1986).

[38] Kobayashi J, Tadokoro N, Watanabe M, Shinomiya M. A novel method of measuring intra-abdominal fat volume using helical computed tomography. International journal of obesity and related metabolic disorders. 26(3):398–402 (2002).

[39] Tandri H, Daya SK, Nasir K, Bomma C, Lima JA, Calkins H, Bluemke DA. Normal reference values for the adult right ventricle by magnetic resonance imaging. American Journal of Cardiology. 98(12):1660-1664 (2006).

[40] Lang RM, adano LP, Mor-Avi V, Afilano J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Journal of the American Society of Echocardiography Am Soc Echocardiography. 28(1):1-39 (2015).

[41] Nahum J, Bensaid A, Dussault C, Macron L, Clemence D, Bouhemad B, Monin JL, Rande JL, Gueret P, Lim P. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circulation Cardiovascular Imaging. 3(3):249- 256 (2010).

[42] Maruo T, Seo Y, Yamada S, Arita T, Ishizu T, Shiga T, Dohi K, Toide H, Furugen A, Inoue K, Daimon M, Kawai H, Tsuruta H, Nishigami K, Yuda S, Ozawa T, Izumi C, Fumikura Y, Wada Y, Doi M, Okada M, Takenaka K, Aonuma K. The Speckle Tracking Imaging for the Assessment of Cardiac Resynchronization Therapy (START) study. Circulation Journal. 79(3):613-622 (2015).

[43] Lu KJ, Chen JX, Profitis K, Kearney LG, DeSilva D, Smith G, Ord M, Harberts S, Calafiore P, Jones E, Srivastava PM. Right ventricular global longitudinal strain is an independent predictor of right ventricular function: a multimodality study of cardiac magnetic resonance imaging, real time three-dimensional echocardiography and speckle tracking echocardiography. Echocardiography. 32(6):966-974 (2015).

[44] Focardi M, Cameli M, Carbone SF, Massoni A, De Vito R, Lisi M, Mondillo S. Traditional and innovative echocardiographic parameters for the analysis of right ventricular performance in comparison with cardiac magnetic renonance. European Heart Journal Cardiovascular Imaging. 1(16):47-52 (2015).

[45] Motoki H, Borowski AG, Shrestha K, Hu B, Kusunose K, Troughton RW, Tang WH, Klein AL. Right ventricular global longitudinal strain provides prognostic value incremental to left ventricular ejection fraction in patients with heart failure. Journal of the American Society of Echocardiography. 27(7):726-732 (2014).

[46] Barakat AF, Sperry BW, Starling RC, Mentias A, Popovic ZB, Griffin BP, Desai MY. Prognostic Utility of Right Ventricular Free Wall Strain in Low Risk Patients After Orthotopic Heart Transplantation. American Journal of Cardiology. 119(11):1890-1896 (2017).

[47] Park SJ, Park JH, Lee HS, Kim MS, Park YK, Park Y, Kim YJ, Lee JH, Choi SW, Jeong JO, Kwon IS, Seong IW. Impaired RV global longitudinal strains is associated with poor long-term clinical outcomes in patients with acute inferior STEMI. Journal of the American College of Cardiology Cardiovascular Imaging. 8(2):161-169 (2015).

[48] Nanayakkara S, Kaye DM Management of heart failure with preserved ejection fraction: a review. Clinical Therapeutics. 37(10):2186-2198 (2015).

[49] Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism. 36(1): 54-59 (1987).

[50] Takahashi H, Mori M. Characteristics and significance of criteria for obesity disease in Japan 2011. Nihon Rinsho. 71(2):257-261 (2013).

[51] Shimabukuro M. Cardiac adiposity and global cardiometabolic risk: new concept and clinical implication. Circulation Journal. 73(1):27-34 (2009).

[52] Chen CY, Asakura M, Asanuma H, Hasegawa T, Tanaka J, Toh N, Min KD, Kanzaki H, Takahama H, Amaki M, Itoh Y, Ichien G, Okumoto Y, Funahashi T, Kim J, Kitakaze M. Plasma adiponectin levels predict cardiovascular events in the observational Arita Cohort Study in Japan: the importance of the plasma adiponectin levels. Hypertension Research. 35(8):843-848 (2012).

[53] Sharma K, Ramachandrarao S, Qiu G, Usui HK, Zhu Y, Dunn SR, Ouedraogo R, Hough K, McCue P, Chan L, Falkner B, Goldstein BJ. Adiponectin regulates albuminuria and podocyte function in mice. Journal of Clinical Investigation. 118 (5):1645-1656 (2008).

[54] Huby AC, Antonova G, Groenendyk J, Gomez-Sanchez CE, Bollag WB, Filosa JA, Belin de Chantemele EJ. Adipocyte-Derived Hormone Leptin Is a Direct Regulator of Aldosterone Secretion, Which Promotes Endothelial Dysfunction and Cardiac Fibrosis. Circulation. 132(22):2134-2145 (2015).

[55] Dalzell JR, Rocchiccioli JP, Weir RA, Jackson CE, Padmanabhan N, Gardner RS, Petrie MC, McMurray JJ. The emerging potential of the apelin-APJ system in heart failure. Journal of Cardiac.Failure. 21(6):489–498 (2015).

[56] Kuba K, Zhang L, Imai Y, Arab S, Chen M, Maekawa Y, Leschnik M, Leibbrandt A, Markovic M, Schwaighofer J, Beetz N, Musialek R, Neely GG, Komnenovic V, Kolm U, Metzler B, Ricci R, Hara H, Meixner A, Nghiem M, Chen X, Dawood F, Wong KM, Sarao R, Cukerman E, Kimura A, Hein L, Thalhammer J, Liu PP, Penninger JM. Imaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload. Circulation Research. 101(4):e32-42 (2007).

[57] Chong KS, Gardner RS, Morton JJ, Ashley EA, McDonagh TA. Plasma concentrations of the novel peptide apelin are decreased in patients with choronic heart failure. European Journal of Heart Fail. 8(4):355-360 (2006).

[58] Wang W, McKinnie SM, Patel VB, Haddad G, Wang Z, Zhabyeyev P, Das SK, Basu R, McLean B, Kandalam V, Penninger JM, Kassiri Z, Vederas JC, Murray AG, Oudit GY. Loss of Apelin exacerbates myocardial infraction adverse remodeling and ischemia- reperfusion injury: therapeutic potential of synthetic Apelin analogues. Journal of the American Heart Association. 2(4):e000249 (2013).

[59] Boal F, Roumegoux J, Alfarano C, Timotin A, Calise D, Anesia R, Drougard A, Knauf C, Lagente C, Roncalli J, Desmoulin F, Tronchere H, Valet P, Parini A, Kunduzova O. Apelin regulates FoxO3 translocation to mediate cardioprotective response to myocardial injury and obesity. Scientific Reports.5:16104 (2015).

[60] Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S. Myocardial strain imaging: how useful is it in clinical decision making? European Heart Journal. 37(15):1196-1207 (2016).

[61] Cho GY, Marwick TH, Kim HS, Kim MK, Hong KS, Oh DJ. Global-2D dimensional strain as a new prognosticator in patients with heart failure. Journal of the American College of Cardiology. 54(7): 618-624 (2009).

[62] Nahum J, Bensaid A, Dussault C, Macron L, Clemence D, Bouhemad B, Monin JL, Rande JL, Gueret P, Lim P. Circulation Cardiovascular Imaging. 3(3):249-256 (2010).

[63] Pagourelias ED, Mirea O, Duchenne J, Van Cleemput J, Delforge M, Bogaert J, Kuznetsova T, Voigt JU. Echo parameters for differential diagnosis in cardiac amyloidosis: A head-to-head comparison of deformation and nondeformation parameters. Circulation Cardiovascular Imaging. 10(3):e005588 (2017).

[64] Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, Zile MR, Voors AA, Lefkowitz MP, Packer M, MuMurray JJ, Solomon SD, PARAMOUNT Investigators. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. Journal of the American College of Cardiology. 63(5): 447-456 (2014).

[65] Shah AM, Claggett B, Sweitzer NK, Shah SJ, Anand IS, Liu L, Pitt B, Pfeffer MA, Solomon SD. Prognostic importance of impaired systolic function in heart failure with preserved ejection fraction and the impact of spironolactone. Circulation. 132(5): 402- 414 (2015).

[66] Wang YC, Liang CS, Gopal DM, Ayalon N, Donohue C, Santhanakrishnan R, Sandhu H, Perez AJ, Downing J, Gokce N, Colucci WS, Ho JE. Preclinical systolic and diastolic dysfunction in metabolically healthy and unhealthy obese individuals. Circulation Heart Failure. 8(5): 897-904 (2015).

[67] Schwarz K, Singh S, Dawson D, Frenneaux MP. Right ventricular function in left ventricular disease: pathophysiology and implications. Heart Lung Circulation. 22(7):507-511(2013).

[68] Park JH, Park JJ, Park JB, Cho GY. Prognostic valve of biventricular strain in risk stratifying in patients with acute heart failure. Journal of the American heart association. 7(19):e009331 (2018).

[69] Ueda Y, Shiga Y, Idemoto Y, Tashiro K, Motozato K, Koyoshi R, Kuwano T, Fujimi K, Ogawa M, Saku K, Miura SI. Association between the presence or severity of coronary artery disease and pericardial fat, paracardial fat, epicardial fat, visceral fat, and subcutaneous fat as assessed by multi-detector row computed tomography. International heart journal. 59(4):695-704 (2018).

[70] Hirata Y, Yamada H, Kusunose K, Iwase T, Nishio S, Hayashi S, Bando M, Amano R, Yamaguchi K, Soeki T, Wakatsuki T, Sata M. Clinical utility of measuring epicardial adipose tissue thickness with echocardiography using a high-frequency liner probe in patients with coronary artery disease. Journal of American Society of Echocardiology. 28 (10):1240-1246 (2015).

[71] Okauchi Y, Nishizawa H, Funahashi T, Ogawa T, Noguchi M, Ryo M, Kihara S, Iwahashi H, Yamagata K, Nakamura T, Shimomura I, Matsuzawa Y. Reduction of visceral fat is associated with decrease in the number of metabolic risk factors in Japanease men. Diabetes Care. 30(9): 2392-2394 (2007).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る