リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「緑藻のピレノイド局在性因子ならびに核局在性因子による無機炭素濃縮機構の調節」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

緑藻のピレノイド局在性因子ならびに核局在性因子による無機炭素濃縮機構の調節

嶋村, 大亮 京都大学 DOI:10.14989/doctor.k24752

2023.03.23

概要

地球上の⼀次⽣産の約半分を担う⽔圏光合成⽣物にとって、⼆酸化炭素(CO2)の
供給速度は光合成の律速要因となるため、微細藻類は能動的に無機炭素(Ci)を葉緑
体内に取り込み、CO2 固定酵素 ribulose 1,5-bisphosphate carboxylase/oxygenase
(Rubisco)に CO2 を供給する無機炭素濃縮機構(CCM)をもつ。この CCM には、複
数の膜局在型の Ci 輸送体と炭酸脱⽔酵素(CA)に加えて、葉緑体内で CO2 固定の場
となる Rubisco の集合体であるピレノイドの形成が重要である。CCM の発現は、⼤気
レベルの CO2 を含む空気を通気する低 CO2 条件で誘導され、逆に 5%(v/v)CO2 を含
む空気を通気する⾼ CO2(HC)条件では抑制されるが、誘導や抑制の機構はまだ明ら
かにされていない。本研究において申請者は、CCM 関連遺伝⼦の発現誘導時における
ピレノイドの形態形成の重要性を検証すると共に、細胞外の CO2 濃度上昇による CCM
の抑制に必要な因⼦の同定に成功した。
申請者は、CO2 要求性変異株をスクリーニングすることで、既知の CCM 誘導因⼦
である亜鉛結合性の核タンパク質 CCM1 ならびにカルシウム結合性タンパク質 CAS
が正常に蓄積するにも関わらず、複数の Ci 輸送体タンパク質の蓄積レベルが低下する
株を単離した。この変異株では野⽣株では単⼀のピレノイドの個数が増加し、デンプ
ン鞘の伸⻑、ピレノイドチューブの数の減少といったピレノイドの形態が異常となっ
ており、ピレノイドを構成するタンパク質 StArch Granules Abnormal 1(SAGA1)をコ
ードする遺伝⼦が変異していた。さらにこの変異により発現が低下する遺伝⼦の中に
は、CCM1 ならびに CAS に依存して発現誘導される CCM に必要な Ci 輸送体 HLA3
と LCIA や、CA をコードする核コードの遺伝⼦が含まれていた。
また、核内で CCM1 と複合体を形成する CCM1-binding protein 1(CBP1)は、CCM
の誘導に関わる可能性が考えられていたが、CBP1 ⽋損変異株では CCM の誘導は正常
である⼀⽅、HC 条件で CCM 抑制が不完全となり、光合成における細胞の Ci に対す
る親和性が上昇した。さらに、HC 条件で本来発現が抑制される Ci 輸送体や CA など
をコードする 21 個の遺伝⼦の発現が部分的に誘導されたことから、CBP1 は CCM 関
連遺伝⼦の発現抑制に寄与する新規因⼦であることが明らかになった。以上の結果か
ら、本研究は、⽔圏における CO2 ⽋乏環境への順化に必要な CCM の誘導に伴う核遺
伝⼦の発現に葉緑体内のピレノイドの形態形成が必要であること、さらに細胞外 CO2
濃度の上昇に伴う CCM の抑制ならびに CCM 関連核遺伝⼦の発現抑制を担う新規核タ
ンパク質の同定に成功し、CO2 環境の変動に応答する光合成の制御機構の⼀端を明ら
かにした。 ...

この論文で使われている画像

参考文献

Adler L, Díaz-Ramos A, Mao Y, Pukacz KR, Fei C, McCormick AJ (2022) New horizons for

building pyrenoid-based CO2-concentrating mechanisms in plants to improve yields. Plant Physiol.

190: 1609–1627

Allen MD, del Campo JA, Kropat J, Merchant SS (2007) FEA1, FEA2, and FRE1, encoding two

homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1

and FTR1 in iron-deficient Chlamydomonas reinhardtii. Eukaryot Cell 6: 1841–1852

Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput

sequencing data. Bioinformatics 31: 166–169

Aspatwar A, Winum J-Y, Carta F, Supuran CT, Hammaren M, Parikka M, Parkkila S (2018)

Carbonic Anhydrase Inhibitors as Novel Drugs against Mycobacterial β-Carbonic Anhydrases: An

Update on In Vitro and In Vivo Studies. Molecules 23: 2911

Baba M, Suzuki I, Shiraiwa Y (2011) Proteomic Analysis of High-CO2-Inducible Extracellular Proteins

in the Unicellular Green Alga, Chlamydomonas reinhardtii. Plant Cell Physiol. 52: 1302–1314

Badger MR, Kaplan A, Berry JA (1980) Internal Inorganic Carbon Pool of Chlamydomonas

reinhardtii: EVIDENCE FOR A CARBON DIOXIDE-CONCENTRATING MECHANISM. Plant

Physiol 66: 407–413

Barrett J, Girr P, Mackinder LCM (2021) Pyrenoids: CO2-fixing phase separated liquid organelles.

Biochim. Biophys. Acta Mol. Cell. Res. 1868: 118949

Berthold P, Schmitt R, Mages W (2002) An engineered Streptomyces hygroscopicus aph 7" gene

mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Protist 153:

401–412

Bedford MT, Sarbassova D, Xu J, Leder P, Yaffe MB (2000) A novel pro-Arg motif recognized by

WW domains. J Biol Chem 275: 10359–10369

Borkhsenious ON, Mason CB, Moroney JV (1998) The intracellular localization of ribulose-1,5bisphosphate Carboxylase/Oxygenase in chlamydomonas reinhardtii. Plant Physiol. 116: 1585–

1591

Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalyzed by ribulose

diphosphate carboxylase. Biochem Biophys Res Commun 45: 716–722

Burlacot A, Dao O, Auroy P, Cuiné S, Li-Beisson Y, Peltier G (2022) Alternative photosynthesis

pathways drive the algal CO2-concentrating mechanism. Nature 605: 366–371

64

Chaux F, Burlacot A, Mekhalfi M, Auroy P, Blangy S, Richaud P, Peltier G (2017) Flavodiiron

Proteins Promote Fast and Transient O2 Photoreduction in Chlamydomonas. Plant Physiol. 174:

1825–1836

Choi BY, Kim H, Shim D, Jang S, Yamaoka Y, Shin S, Yamano T, Kajikawa M, Jin E, Fukuzawa

H, Lee Y (2022) The Chlamydomonas bZIP transcription factor BLZ8 confers oxidative stress

tolerance by inducing the carbon-concentrating mechanism. Plant Cell 34: 910–926

Craig RJ, Gallaher SD, Shu S, Salomé P, Jenkins JW, Blaby-Haas CE, Purvine SO, O'Donnell S,

Barry K, Grimwood J, Strenkert D, Kropat J, Daum C, Yoshinaga Y, Goodstein DM, Vallon

O, Schmutz J, Merchant SS (2022) The Chlamydomonas Genome Project, version 6: reference

assemblies for mating type plus and minus strains reveal extensive structural mutation in the

laboratory. Plant Cell in press

DalCorso G, Pesaresi P, Masiero S, Aseeva E, Schünemann D, Finazzi G, Joliot P, Barbato R,

Leister D (2008) A complex containing PGRL1 and PGR5 is involved in the switch between linear

and cyclic electron flow in Arabidopsis. Cell 132: 273–285

Duanmu D, Miller AR, Horken KM, Weeks DP, Spalding MH (2009) Knockdown of limiting-CO2induced gene HLA3 decreases HCO3- transport and photosynthetic Ci affinity in Chlamydomonas

reinhardtii. Proc. Natl. Acad. Sci. USA 106: 5990–5995

Edmonds KA, Jordan MR, Giedroc DP (2021) COG0523 proteins: a functionally diverse family of

transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 13:

mfab046

Eriksson M, Gardestrom P, Samuelsson G (1995) Isolation, Purification, and Characterization of

Mitochondria from Chlamydomonas reinhardtii. Plant Physiol. 107: 479–483

Fang W, Si Y, Douglass S, Casero D, Merchant SS, Pellegrini M, Ladunga I, Liu P, Spalding MH

(2012) Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by

carbon dioxide and the CO2-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24: 1876–

1893

Figge RM, Cassier-Chauvat C, Chauvat F, Cerff R (2001) Characterization and analysis of an

NAD(P)H dehydrogenase transcriptional regulator critical for the survival of cyanobacteria facing

inorganic carbon starvation and osmotic stress. Mol Microbiol 39: 455–468

Freeman Rosenzweig ES, Xu B, Kuhn Cuellar L, Martinez-Sanchez A, Schaffer M, Strauss M,

Cartwright HN, Ronceray P, Plitzko JM, Förster F, Wingreen NS, Engel BD, Mackinder

65

LCM, Jonikas MC (2017) The Eukaryotic CO2-Concentrating Organelle Is Liquid-like and

Exhibits Dynamic Reorganization. Cell 171: 148-162.e19

Fujiwara S, Fukuzawa H, Tachiki A, Miyachi S (1990) Structure and differential expression of two

genes encoding carbonic anhydrase in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 87:

9779–9783

Fukuzawa H, Fujiwara S, Tachiki A, Miyachi S (1990) Nucleotide sequences of two genes CAH1 and

CAH2 which encode carbonic anhydrase polypeptides in Chlamydomonas reinhardtii. Nucleic

Acids Res 18: 6441–6442

Fukuzawa H, Ishizaki K, Miura K, Matsueda S, Inoue T, Kucho K, Ohyama K (1998) Isolation and

characterization of high-CO2 requiring mutants from Chlamydomonas reinhardtii by gene tagging.

Can J Bot 76: 1092–1097

Fukuzawa H, Miura K, Ishizaki K, Kucho KI, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a

regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas

reinhardtii by sensing CO2 availability. Proc. Natl. Acad. Sci. USA 98: 5347–5352

Gallaher SD, Fitz-Gibbon ST, Glaesener AG, Pellegrini M, Merchant SS (2015) Chlamydomonas

Genome Resource for Laboratory Strains Reveals a Mosaic of Sequence Variation, Identifies True

Strain Histories, and Enables Strain-Specific Studies. Plant Cell 27: 2335–2352

Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P (2017) Targeting of

Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9.

Plant Cell 29: 2498–2518

Haas CE, Rodionov DA, Kropat J, Malasarn D, Merchant SS, de Crécy-Lagard V (2009) A subset

of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all

kingdoms of life. BMC Genomics 10: 470

Hagino T, Kato T, Kasuya G, Kobayashi K, Kusakizako T, Hamamoto S, Sobajima T, Fujiwara Y,

Yamashita K, Kawasaki H, Maturana AD, Nishizawa T, Nureki O (2022) Cryo-EM structures

of thylakoid-located voltage-dependent chloride channel VCCN1. Nat. Commun. 13: 2505

Hanawa Y, Watanabe M, Karatsu Y, Fukuzawa H, Shiraiwa Y (2007) Induction of a high-CO2inducible, periplasmic protein, H43, and its application as a high-CO2-responsive marker for study

of the high-CO2-sensing mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol. 48: 299–

309

66

Harris EH (1989) The Chlamydomonas Source Book: A Comprehensive Guide to Biology and

Laboratory Use. San Diego: CA: Academic Press.

He S, Chou HT, Matthies D, Wunder T, Meyer MT, Atkinson N, Martinez-Sanchez A, Jeffrey PD,

Port SA, Patena W, He G, Chen VK, Hughson FM, McCormick AJ, Mueller-Cajar O, Engel

BD, Yu Z, Jonikas MC (2020) The structural basis of Rubisco phase separation in the pyrenoid.

Nat Plants 6: 1480–1490

Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A (2003)

Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr

Biol 13: 230–235

Herdean A, Teardo E, Nilsson AK, Pfeil BE, Johansson ON, Ünnep R, Nagy G, Zsiros O, Dana S,

Solymosi K, Garab G, Szabó I, Spetea C, Lundin B (2016) A voltage-dependent chloride

channel fine-tunes photosynthesis in plants. Nat. Commun. 7: 11654

Hogetsu D, Miyachi S (1977) Effects of CO2 concentration during growth on subsequent photosynthetic

CO2 fixation in Chlorella. Plant Cell Physiol. 18: 347–352

Im CS, Grossman AR (2002) Identification and regulation of high light-induced genes in

Chlamydomonas reinhardtii. Plant J. 30: 301–313

Itakura AK, Chan KX, Atkinson N, Pallesen L, Wang L, Reeves G, Patena W, Caspari O, Roth R,

Goodenough U, McCormick AJ, Griffiths H, Jonikas MC (2019) A Rubisco-binding protein is

required for normal pyrenoid number and starch sheath morphology in Chlamydomonas reinhardtii.

Proc. Natl. Acad. Sci. USA 116: 18445–18454

Jin S, Sun J, Wunder T, Tang D, Cousins AB, Sze SK, Mueller-Cajar O, Gao Y-G (2016) Structural

insights into the LCIB protein family reveals a new group of β-carbonic anhydrases. Proc. Natl.

Acad. Sci. USA 113: 14716–14721

Jones HG (1992) Plants and microclimate: A quantitative approach to environmental plant physiology.

Second edition, Cambridge, UK: Cambridge University Press

Karlsson J, Clarke AK, Chen Z-Y, Hugghins SY, Park Y-I, Husic HD, Moroney JV, Samuelsson G

(1998) A novel α-type carbonic anhydrase associated with the thylakoid membrane in

Chlamydomonas reinhardtii is required for growth at ambient CO2. EMBO J. 17: 1208–1216

Khil PP, Obmolova G, Teplyakov A, Howard AJ, Gilliland GL, Camerini-Otero RD (2004) Crystal

structure of the Escherichia coli YjiA protein suggests a GTP-dependent regulatory function.

Proteins 54: 371–374

67

Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements.

Nat. Methods 12: 357–360

Kohinata T, Nishino H, Fukuzawa H (2008) Significance of zinc in a regulatory protein, CCM1, which

regulates the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol.

49: 273–283

Kono A, Chou TH, Radhakrishnan A, Bolla JR, Sankar K, Shome S, Su CC, Jernigan RL,

Robinson CV, Yu EW, Spalding MH (2020) Structure and function of LCI1: a plasma membrane

CO2 channel in the Chlamydomonas CO2 concentrating mechanism. Plant J 102: 1107–1126

Kono A, Spalding MH (2020) LCI1, a Chlamydomonas reinhardtii plasma membrane protein, functions

in active CO2 uptake under low CO2. Plant J 102: 1127–1141

Kustu S, Inwood W (2006) Biological gas channels for NH3 and CO2: evidence that Rh (Rhesus)

proteins are CO2 channels. Transfus. Clin. Biol. 13: 103–110

Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA,

Fitz-Gibbon ST, Grossman AR, Jonikas MC (2016) An Indexed, Mapped Mutant Library

Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii. Plant

Cell 28: 367–387

Ma Y, Pollock SV, Xiao Y, Cunnusamy K, Moroney JV (2011) Identification of a Novel Gene, CIA6,

Required for Normal Pyrenoid Formation in Chlamydomonas reinhardtii. Plant Physiol. 156: 884–

896

Macias MJ, Hyvönen M, Baraldi E, Schultz J, Sudol M, Saraste M, Oschkinat H (1996) Structure of

the WW domain of a kinase-associated protein complexed with a proline-rich peptide. Nature 382:

646–649

Matsuda Y, Colman B (1996) A New Screening Method for Algal Photosynthetic Mutants (CO2Insensitive Mutants of the Green Alga Chlorella ellipsoidea). Plant Physiol 110: 1283–1291

Mackinder LCM, Chen C, Leib RD, Patena W, Blum SR, Rodman M, Ramundo S, Adams CM,

Jonikas MC (2017) A Spatial Interactome Reveals the Protein Organization of the Algal CO2Concentrating Mechanism. Cell 171: 133-147.e14

Mackinder LC, Meyer MT, Mettler-Altmann T, Chen VK, Mitchell MC, Caspari O, Freeman

Rosenzweig ES, Pallesen L, Reeves G, Itakura A, Roth R, Sommer F, Geimer S, Mühlhaus T,

Schroda M, Goodenough U, Stitt M, Griffiths H, Jonikas MC (2016) A repeat protein links

68

Rubisco to form the eukaryotic carbon-concentrating organelle. Proc. Natl. Acad. Sci. USA 113:

5958–5963

Mariscal V, Moulin P, Orsel M, Miller AJ, Fernández E, Galván A (2006) Differential Regulation of

the Chlamydomonas Nar1 Gene Family by Carbon and Nitrogen. Protist 157: 421–433

Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A,

Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA,

Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood

J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R,

Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann

A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA,

Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T,

Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour

G, Purton S, Ral JP, Riaño-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D,

Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M,

Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J,

Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C,

Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B,

Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri

J, Luo Y, Martínez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G,

Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals

the evolution of key animal and plant functions. Science 318: 245–250

Meyer MT, Itakura AK, Patena W, Wang L, He S, Emrich-Mills T, Lau CS, Yates G, Mackinder

LCM, Jonikas MC (2020) Assembly of the algal CO2-fixing organelle, the pyrenoid, is guided by

a Rubisco-binding motif. Sci. Adv. 6: eabd2408

Miura K, Yamano T, Yoshioka S, Kohinata T, Inoue Y, Taniguchi F, Asamizu E, Nakamura Y,

Tabata S, Yamato KT, Ohyama K, Fukuzawa H (2004) Expression profiling-based

identification of CO2-responsive genes regulated by CCM1 controlling a carbon-concentrating

mechanism in Chlamydomonas reinhardtii. Plant Physiol 135: 1595–1607

Motohashi K (2015) A simple and efficient seamless DNA cloning method using SLiCE from

Escherichia coli laboratory strains and its application to SLiP site-directed mutagenesis. BMC

Biotechnol 15: 47

69

Mukherjee A, Lau CS, Walker CE, Rai AK, Prejean CI, Yates G, Emrich-Mills T, Lemoine SG,

Vinyard DJ, Mackinder LCM, Moroney JV (2019) Thylakoid localized bestrophin-like proteins

are essential for the CO2 concentrating mechanism of Chlamydomonas reinhardtii. Proc. Natl.

Acad. Sci. USA 116: 16915–16920

Munekage Y, Hojo M, Meurer J, Endo T, Tasaka M, Shikanai T (2002) PGR5 is involved in cyclic

electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:

361–371

Onishi M, Pringle JR (2016) Robust Transgene Expression from Bicistronic mRNA in the Green Alga

Chlamydomonas reinhardtii. G3 (Bethesda) 6: 4115–4125

Ohnishi N, Mukherjee B, Tsujikawa T, Yanase M, Nakano H, Moroney JV, Fukuzawa H (2010)

Expression of a low CO₂-inducible protein, LCI1, increases inorganic carbon uptake in the green

alga Chlamydomonas reinhardtii. Plant Cell 22: 3105–3117

Ohno N, Inoue T, Yamashiki R, Nakajima K, Kitahara Y, Ishibashi M, Matsuda Y (2012) CO2cAMP-Responsive cis-Elements Targeted by a Transcription Factor with CREB/ATF-Like Basic

Zipper Domain in the Marine Diatom Phaeodactylum tricornutum. Plant Physiol. 158: 499–513

Rai AK, Chen T, Moroney JV (2021) Mitochondrial carbonic anhydrases are needed for optimal

photosynthesis at low CO2 levels in Chlamydomonas. Plant Physiol. 187: 1387–1398

Rawat M, Moroney JV (1991) Partial characterization of a new isoenzyme of carbonic anhydrase

isolated from Chlamydomonas reinhardtii. J. Biol. Chem. 266: 9719–9723

Riaño-Pachón DM, Corrêa LGG, Trejos-Espinosa R, Mueller-Roeber B (2008) Green transcription

factors: a chlamydomonas overview. Genetics 179: 31–39

Rolland N, Dorne AJ, Amoroso G, Sültemeyer DF, Joyard J, Rochaix JD (1997) Disruption of the

plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of

Chlamydomonas. EMBO J. 16: 6713–6726

Roy D, Paul A, Roy A, Ghosh R, Ganguly P, Chaudhuri S (2014) Differential acetylation of histone

H3 at the regulatory region of OsDREB1b promoter facilitates chromatin remodelling and

transcription activation during cold stress. PLoS One 9: e100343

Santhanagopalan I, Wong R, Mathur T, Griffiths H (2021) Orchestral manoeuvres in the light:

crosstalk needed for regulation of the Chlamydomonas carbon concentration mechanism. J. Exp.

Bot. 72: 4604–4624

70

Shimakawa G, Ishizaki K, Tsukamoto S, Tanaka M, Sejima T, Miyake C (2017) The Liverwort,

Marchantia, Drives Alternative Electron Flow Using a Flavodiiron Protein to Protect PSI. Plant

Physiol. 173: 1636–1647

Soupene E, Inwood W, Kustu S (2004) Lack of the Rhesus protein Rh1 impairs growth of the green

alga Chlamydomonas reinhardtii at high CO2. Proc. Natl. Acad. Sci. USA 101: 7787–7792

Soupene E, King N, Feild E, Liu P, Niyogi KK, Huang C-H, Kustu S (2002) Rhesus expression in a

green alga is regulated by CO2. Proc. Natl. Acad. Sci. USA 99: 7769–7773

Spalding MH, Spreitzer RJ, Ogren WL (1983) Carbonic Anhydrase-Deficient Mutant of

Chlamydomonas reinhardii Requires Elevated Carbon Dioxide Concentration for Photoautotrophic

Growth. Plant Physiol. 73: 268–272

Strakova Z, Reed J, Ihnatovych I (2010) Human Transcriptional Coactivator with PDZ-Binding Motif

(TAZ) Is Downregulated During Decidualization1. Biol. Reprod. 82: 1112–1118

Sudol M, Sliwa K, Russo T (2001) Functions of WW domains in the nucleus. FEBS Lett. 490: 190–195

Tokutsu R, Fujimura-Kamada K, Matsuo T, Yamasaki T, Minagawa J (2019) The CONSTANS

flowering complex controls the protective response of photosynthesis in the green alga

Chlamydomonas. Nat. Commun. 10: 4099

Toyokawa C, Yamano T, Fukuzawa H (2020) Pyrenoid Starch Sheath Is Required for LCIB

Localization and the CO2-Concentrating Mechanism in Green Algae. Plant Physiol. 182: 1883–

1893

Tsuji Y, Kinoshita A, Tsukahara M, Ishikawa T, Shinkawa H, Yamano T, Fukuzawa H (2022) A

YAK1-type protein kinase, triacylglycerol accumulation regulator 1, in the green alga

Chlamydomonas reinhardtii is a potential regulator of cell division and differentiation into gametes

during photoautotrophic nitrogen deficiency. J. Gen. Appl. Microbiol. advpub: 2022.08.001

Van K, Spalding MH (1999) Periplasmic carbonic anhydrase structural gene (Cah1) mutant in

chlamydomonas reinhardtii. Plant Physiol. 120: 757–764

Vance P, Spalding MH (2005) Growth, photosynthesis, and gene expression in Chlamydomonas over a

range of CO2 concentrations and CO2/O2 ratios: CO2 regulates multiple acclimation states. Can. J.

Bot. 83, 796–809.

Wang H-L, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in

Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of

ndhR, a LysR family regulator. J Biol Chem 279: 5739–5751

71

Wang L, Yamano T, Kajikawa M, Hirono M, Fukuzawa H (2014) Isolation and characterization of

novel high-CO2-requiring mutants of Chlamydomonas reinhardtii. Photosynth. Res. 121: 175–184

Wang L, Yamano T, Takane S, Niikawa Y, Toyokawa C, Ozawa SI, Tokutsu R, Takahashi Y,

Minagawa J, Kanesaki Y, Yoshikawa H, Fukuzawa H (2016) Chloroplast-mediated regulation

of CO2-concentrating mechanism by Ca2+-binding protein CAS in the green alga Chlamydomonas

reinhardtii. Proc. Natl. Acad. Sci. USA 113: 12586–12591

Wang Y, Sun Z, Horken KM, Im C-S, Xiang Y, Grossman AR, Weeks DP (2005) Analyses of CIA5,

the master regulator of the carbon-concentrating mechanism in Chlamydomonas reinhardtii, and its

control of gene expression. Can J Bot 83: 765–779

Wang Y, Spalding MH (2014) Acclimation to Very Low CO2: Contribution of Limiting CO2 Inducible

Proteins, LCIB and LCIA, to Inorganic Carbon Uptake in Chlamydomonas reinhardtii. Plant

Physiol. 166: 2040–2050

Wunder T, Cheng SLH, Lai S-K, Li H-Y, Mueller-Cajar O (2018) The phase separation underlying

the pyrenoid-based microalgal Rubisco supercharger. Nat. Commun. 9: 5076

Xiang Y, Zhang J, Weeks DP (2001) The Cia5 gene controls formation of the carbon concentrating

mechanism in Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 98: 5341–5346

Yamagami A, Saito C, Nakazawa M, Fujioka S, Uemura T, Matsui M, Sakuta M, Shinozaki K,

Osada H, Nakano A, Asami T, Nakano T (2017) Evolutionarily conserved BIL4 suppresses the

degradation of brassinosteroid receptor BRI1 and regulates cell elongation. Sci Rep 7: 5739

Yamano T, Miura K, Fukuzawa H (2008) Expression analysis of genes associated with the induction of

the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol 147: 340–354

Yamano T, Tsujikawa T, Hatano K, Ozawa S, Takahashi Y, Fukuzawa H (2010) Light and LowCO2-Dependent LCIB–LCIC Complex Localization in the Chloroplast Supports the CarbonConcentrating Mechanism in Chlamydomonas reinhardtii. Plant Cell Physiol. 51: 1453–1468

Yamano T, Iguchi H, Fukuzawa H (2013) Rapid transformation of Chlamydomonas reinhardtii without

cell-wall removal. J. Biosci. Bioeng. 115: 691–694

Yamano T, Sato E, Iguchi H, Fukuda Y, Fukuzawa H (2015) Characterization of cooperative

bicarbonate uptake into chloroplast stroma in the green alga Chlamydomonas reinhardtii. Proc.

Natl. Acad. Sci. USA 112: 7315–7320

Yamano T, Fukuzawa H (2016) Indirect Immunofluorescence Assay in Chlamydomonas reinhardtii.

Bio-protocol: 6(13):e1864

72

Yamano T, Toyokawa C, Fukuzawa H (2018) High-resolution suborganellar localization of Ca2+binding protein CAS, a novel regulator of CO2-concentrating mechanism. Protoplasma 255: 1015–

1022

Yamano T, Toyokawa C, Shimamura D, Matsuoka T, Fukuzawa H (2022) CO2-dependent migration

and relocation of LCIB, a pyrenoid-peripheral protein in Chlamydomonas reinhardtii. Plant

Physiol. 188: 1081–1094

Yoshihara C, Inoue K, Schichnes D, Ruzin S, Inwood W, Kustu S (2008) An Rh1-GFP fusion protein

is in the cytoplasmic membrane of a white mutant strain of Chlamydomonas reinhardtii. Mol. Plant

1: 1007–1020

Yoshioka S, Taniguchi F, Miura K, Inoue T, Yamano T, Fukuzawa H (2004) The novel Myb

transcription factor LCR1 regulates the CO2-responsive gene Cah1, encoding a periplasmic

carbonic anhydrase in Chlamydomonas reinhardtii. Plant Cell 16: 1466–1477

Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, Lai ZC, Guan KL

(2008) TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22: 1962–

1971

73

謝辞

本研究を進めるにあたり、京都大学大学院 生命科学研究科 福澤秀哉教授、⼭野

隆志准教授、辻敬典助教に⼼より感謝申し上げます。⽇々の研究や、学内外での研

究成果発表、論⽂執筆など多岐にわたりご指導いただきました。

国⽴遺伝学研究所 豊⽥敦特任教授には次世代シーケンサーを⽤いた RNA-seq 解

析についてお世話になりました。また、京都⼤学⽣命科学研究科 中野雄司教授、⼭

上あゆみ助教にはベンサミアナタバコを⽤いた BiFC アッセイについてお世話にな

りました。基礎⽣物学研究所 真野昌⼆准教授には BiFC アッセイに⽤いるベクター

をご提供いただきました。ルイジアナ州⽴⼤学 James Moroney 教授には、国際学

会でお会いした際に研究内容について多くのご提⾔をいただきました。また、ルイ

ジアナ州⽴⼤学 Lilly LaPlace ⽒には投稿論⽂について多くの助⾔をいただきまし

た。

事務補佐員の⼭岡恵⽒、秋吉由加理⽒、技術補佐員の島⽥寛⼦⽒には、研究⽣活

について多⼤なサポートしていただきました。

また、微⽣物細胞機構学分野の皆様にも⼤変お世話になりました。豊川知華⽒、

新川友貴⽒、新川はるか⽒、Hu donghui ⽒には当研究室に在籍されていた当時、実

験技術や様々な知識をご教授いただき、多くのご助⾔をいただきました。また、安

⽥詢⼦⽒には cbp1 変異株の作出や解析について⼿助けをいただきました。また

CCM1 結合タンパク質の同定を⾏った卒業⽣の⼭原洋佑⽒ 佐々⽊優⽒にも感謝申

し上げます。

最後に、研究⽣活を送る間、温かく応援してくれた家族の皆様に感謝します。本

当にありがとうございました。

嶋村 ⼤亮

74

本学位論⽂は以下の学術論⽂の内容に基づいて書かれたものである。

Shimamura D, Yamano T, Niikawa Y, Donghui H, Fukuzawa H

A pyrenoid-localized protein SAGA1 is necessary for Ca2+-binding protein CAS-dependent

expression of nuclear genes encoding inorganic carbon transporters in Chlamydomonas

reinhardtii

Photosynthesis Research (in press)

その他学術雑誌に発表した論文

Yamano T, Toyokawa C, Shimamura D, Matsuoka T, Fukuzawa H.

CO2-dependent migration and relocation of LCIB, a pyrenoid-peripheral protein in

Chlamydomonas reinhardtii

Plant Physiology 2022 Feb 4;188(2):1081-1094

75

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る