リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「eSPRESSO: topological clustering of single-cell transcriptomics data to reveal informative genes for spatio–temporal architectures of cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

eSPRESSO: topological clustering of single-cell transcriptomics data to reveal informative genes for spatio–temporal architectures of cells

Mori, Tomoya Takase, Toshiro Lan, Kuan-Chun Yamane, Junko Alev, Cantas Kimura, Azuma Osafune, Kenji Yamashita, Jun K. Akutsu, Tatsuya Kitano, Hiroaki Fujibuchi, Wataru 京都大学 DOI:10.1186/s12859-023-05355-4

2023.06.15

概要

[Background] Bioinformatics capability to analyze spatio–temporal dynamics of gene expression is essential in understanding animal development. Animal cells are spatially organized as functional tissues where cellular gene expression data contain information that governs morphogenesis during the developmental process. Although several computational tissue reconstruction methods using transcriptomics data have been proposed, those methods have been ineffective in arranging cells in their correct positions in tissues or organs unless spatial information is explicitly provided. [Results] This study demonstrates stochastic self-organizing map clustering with Markov chain Monte Carlo calculations for optimizing informative genes effectively reconstruct any spatio–temporal topology of cells from their transcriptome profiles with only a coarse topological guideline. The method, eSPRESSO (enhanced SPatial REconstruction by Stochastic Self-Organizing Map), provides a powerful in silico spatio–temporal tissue reconstruction capability, as confirmed by using human embryonic heart and mouse embryo, brain, embryonic heart, and liver lobule with generally high reproducibility (average max. accuracy = 92.0%), while revealing topologically informative genes, or spatial discriminator genes. Furthermore, eSPRESSO was used for temporal analysis of human pancreatic organoids to infer rational developmental trajectories with several candidate ‘temporal’ discriminator genes responsible for various cell type differentiations. [Conclusions] eSPRESSO provides a novel strategy for analyzing mechanisms underlying the spatio–temporal formation of cellular organizations.

この論文で使われている画像

参考文献

1. Rossi MA, Basiri ML, McHenry JA, Kosyk O, Otis JM, van den Munkhof HE, et al. Obesity remodels activity and tran‑

scriptional state of a lateral hypothalamic brake on feeding. Science. 2019;364:1271–4.

2. Jackson HW, Fischer JR, Zanotelli VRT, Ali HR, Mechera R, Soysal SD, et al. The single-cell pathology landscape of

breast cancer. Nature. 2020;578:615–20.

3. Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, et al. Cells of the adult human heart.

Nature. 2020;588:466–72.

4. Battich N, Stoeger T, Pelkmans L. Image-based transcriptomics in thousands of single human cells at single-mole‑

cule resolution. Nat Methods. 2013;10:1127–33.

5. Lubeck E, Cai L. Single-cell systems biology by super-resolution imaging and combinatorial labeling. Nat Methods.

2012;9:743–8.

6. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. Spatially resolved, highly multiplexed RNA profiling in single

cells. Science. 2015;348:aaa6090.

7. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, et al. Visualization and analysis of gene expres‑

sion in tissue sections by spatial transcriptomics. Science. 2016;353:78–82.

8. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat

Biotechnol. 2015;33:495–502.

9. Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D, et al. High-throughput spatial mapping of

single-cell RNA-seq data to tissue of origin. Nat Biotechnol. 2015;33:503–9.

10. Halpern KB, Shenhav R, Matcovitch-Natan O, Tóth B, Lemze D, Golan M, et al. Single-cell spatial reconstruction

reveals global division of labour in the mammalian liver. Nature. 2017;542:352–6.

11. Durruthy-Durruthy R, Gottlieb A, Hartman BH, Waldhaus J, Laske RD, Altman R, et al. Reconstruction of the mouse

otocyst and early neuroblast lineage at single-cell resolution. Cell. 2014;157:964–78.

12. Durruthy-Durruthy R, Gottlieb A, Heller S. 3D computational reconstruction of tissues with hollow spherical mor‑

phologies using single-cell gene expression data. Nat Protoc. 2015;10:459–74.

13. Durruthy-Durruthy J, Wossidlo M, Pai S, Takahashi Y, Kang G, Omberg L, et al. Spatiotemporal reconstruction of

the human blastocyst by single-cell gene-expression analysis informs induction of naive pluripotency. Dev Cell.

2016;38:100–15.

14. Li J, Luo H, Wang R, Lang J, Zhu S, Zhang Z, et al. Systematic reconstruction of molecular cascades regulating GP

development using single-cell RNA-seq. Cell Rep. 2016;15:1467–80.

15. Nitzan M, Karaiskos N, Friedman N, Rajewsky N. Gene expression cartography. Nature. 2019;576:132–7.

16. Cang Z, Nie Q. Inferring spatial and signaling relationships between cells from single cell transcriptomic data. Nat

Commun. 2020;11:2084.

17. González-Blas C, Quan X-J, Duran-Romaña R, Taskiran II, Koldere D, Davie K, et al. Identification of genomic enhanc‑

ers through spatial integration of single-cell transcriptomics and epigenomics. Mol Syst Biol. 2020;16:e9438.

18. Ren X, Zhong G, Zhang Q, Zhang L, Sun Y, Zhang Z. Reconstruction of cell spatial organization from single-cell RNA

sequencing data based on ligand-receptor mediated self-assembly. Cell Res. 2020;30:763–78.

19. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, et al. Slide-seq: a scalable technology for

measuring genome-wide expression at high spatial resolution. Science. 2019;363:1463–7.

20. Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Bella DJD, et al. Highly sensitive spatial transcriptomics at near-cellular

resolution with Slide-seqV2. Nat Biotechnol. 2021;39:313–9.

21. Vickovic S, Eraslan G, Salmén F, Klughammer J, Stenbeck L, Schapiro D, et al. High-definition spatial transcriptomics

for in situ tissue profiling. Nat Methods. 2019;16:987–90.

22. Chen A, Liao S, Cheng M, Ma K, Wu L, Lai Y, et al. Spatiotemporal transcriptomic atlas of mouse organogenesis using

DNA nanoball-patterned arrays. Cell. 2022;185:1777–92.

23. Hu J, Li X, Coleman K, Schroeder A, Ma N, Irwin DJ, et al. SpaGCN: Integrating gene expression, spatial location and

histology to identify spatial domains and spatially variable genes by graph convolutional network. Nat Methods.

2021;18:1342–51.

24. Palla G, Spitzer H, Klein M, Fischer D, Schaar AC, Kuemmerle LB, et al. Squidpy: a scalable framework for spatial omics

analysis. Nat Methods. 2022;19:171–8.

25. Shen R, Liu L, Wu Z, Zhang Y, Yuan Z, Guo J, et al. Spatial-ID: a cell typing method for spatially resolved transcriptom‑

ics via transfer learning and spatial embedding. Nat Commun. 2022;13:7640.

26. Mori T, Takaoka H, Yamane J, Alev C, Fujibuchi W. Novel computational model of gastrula morphogenesis to identify

spatial discriminator genes by self-organizing map (SOM) clustering. Sci Rep. 2019;9:1–10.

27. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biol‑

ogy. Nat Genet. 2000;25:25–9.

28. The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources. Nucleic Acids Res.

2017;45:D331–8.

29. Kangas JA, Kohonen TK, Laaksonen JT. Variants of self-organizing maps. IEEE Trans Neural Net. 1990;1:93–9.

30. Kohonen T. Self-organized formation of topologically correct feature maps. Biol Cybern. 1982;43:59–69.

31. von der Malsburg C. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik. 1973;14:85–100.

32. Turing AM. The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci. 1952;237:37–72.

33. Li X, Gasteiger J, Zupan J. On the topology distortion in self-organizing feature maps. Biol Cybern. 1993;70:189–98.

34. Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, et al. Dimensionality reduction for visualizing single-cell

data using UMAP. Nat Biotechnol. 2018;37:38–44.

Page 26 of 27

Mori et al. BMC Bioinformatics

(2023) 24:252

35. Andrieu C, De Freitas N, Doucet A, Jordan MI. An Introduction to MCMC for machine learning. Mach Learn.

2003;50:5–43.

36. Peng G, Suo S, Cui G, Yu F, Wang R, Chen J, et al. Molecular architecture of lineage allocation and tissue organization

in early mouse embryo. Nature. 2019;572:528–32.

37. Swendsen RH, Wang JS. Replica monte carlo simulation of spin-glasses. Phys Rev Lett. 1986;57:2607.

38. Braeuning A, Ittrich C, Köhle C, Hailfinger S, Bonin M, Buchmann A, et al. Differential gene expression in periportal

and perivenous mouse hepatocytes. FEBS J. 2006;273:5051–61.

39. Tasic B, Yao Z, Graybuck LT, Smith KA, Nguyen TN, Bertagnolli D, et al. Shared and distinct transcriptomic cell types

across neocortical areas. Nature. 2018;563:72–8.

40. Asp M, Giacomello S, Larsson L, Wu C, Fürth D, Qian X, et al. A spatio–temporal organ-wide gene expression and cell

atlas of the developing human heart. Cell. 2019;179:1647-1660.e19.

41. de Soysa TY, Ranade SS, Okawa S, Ravichandran S, Huang Y, Salunga HT, et al. Single-cell analysis of cardiogenesis

reveals basis for organ-level developmental defects. Nature. 2019;572:120–4.

42. Hashimoto K, Kodama A, Honda T, Hanashima A, Ujihara Y, Murayama T, et al. Fam64a is a novel cell cycle promoter

of hypoxic fetal cardiomyocytes in mice. Sci Rep. 2017;7:1–17.

43. Han S, Cui C, He H, Shen X, Chen Y, Wang Y, et al. FHL1 regulates myoblast differentiation and autophagy through its

interaction with LC3. J Cell Physiol. 2020;235:4667–78.

44. Wang X, Osinska H, Gerdes AM, Robbins J. Desmin filaments and cardiac disease: establishing causality. J Card Fail.

2002;8:S287–92.

45. Gladka MM, Kohela A, Molenaar B, Versteeg D, Kooijman L, Monshouwer-Kloots J, et al. Cardiomyocytes stimulate

angiogenesis after ischemic injury in a ZEB2-dependent manner. Nat Commun. 2021;12:1–16.

46. Eghbali A, Dukes A, Toischer K, Hasenfuss G, Field LJ. Cell cycle-mediated cardiac regeneration in the mouse heart.

Curr Cardiol Rep. 2019;21:131.

47. Veres A, Faust AL, Bushnell HL, Engquist EN, Kenty JH-R, Harb G, et al. Charting cellular identity during human in vitro

β-cell differentiation. Nature. 2019;569:368–73.

48. Zhang D, Jiang W, Liu M, Sui X, Yin X, Chen S, et al. Highly efficient differentiation of human ES cells and iPS cells into

mature pancreatic insulin-producing cells. Cell Res. 2009;19:429–38.

49. Sandoval DA, D’Alessio DA. Physiology of proglucagon peptides: role of glucagon and GLP-1 in health and disease.

Physiol Rev. 2015;95:513–48.

50. Bethea M, Liu Y, Wade AK, Mullen R, Gupta R, Gelfanov V, et al. The islet-expressed Lhx1 transcription factor interacts

with Islet-1 and contributes to glucose homeostasis. Am J Physiol Endocrinol Metab. 2019;316:E397–409.

51. Haris B, Saraswathi S, Hussain K. Somatostatin analogues for the treatment of hyperinsulinaemic hypoglycaemia.

Ther Adv Endocrinol Metab. 2020;11:2042018820965068.

52. Epskamp S, Fried EI. A tutorial on regularized partial correlation networks. Psychol Methods. 2018;23:617–34.

53. Baeyens L, Lemper M, Staels W, Groef SD, Leu ND, Heremans Y, et al. (Re)generating human beta cells: status, pitfalls,

and perspectives. Physiol Rev. 2018;98:1143–67.

54. Yu X-X, Qiu W-L, Yang L, Zhang Y, He M-Y, Li L-C, et al. Defining multistep cell fate decision pathways during pancre‑

atic development at single-cell resolution. EMBO J. 2019;38: e100164.

55. Hao Y, Hao S, Andersen-Nissen E, Mauck WM III, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell

data. Cell. 2021;184:3573-3587.e29.

56. Cannoodt R, Saelens W, Deconinck L, Saeys Y. Spearheading future omics analyses using dyngen, a multi-modal

simulator of single cells. Nat Commun. 2021;12(1):3942.

57. Bhaduri A, Andrews MG, Leon WM, Jung D, Shin D, Allen D, et al. Cell stress in cortical organoids impairs molecular

subtype specification. Nature. 2020;578:142–8.

58. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech:

Theory Exp. 2008;2008:P10008.

59. Peng G, Suo S, Chen J, Chen W, Liu C, Yu F, et al. Spatial transcriptome for the molecular annotation of lineage fates

and cell identity in mid-gastrula mouse embryo. Dev Cell. 2016;36:681–97.

60. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics

data sets–update. Nucleic Acids Res. 2013;41(Database issue):D991–5.

61. Rand WM. Objective criteria for the evaluation of clustering methods. J Am Stat Assoc. 1971;66:846–50.

62. Kirkpatrick S, Gelatt CD Jr, Vacchi MP. Optimization by simulated annealing. Science. 1983;220:671–80.

63. Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.

64. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the integration of genomic datasets with the R/

Bioconductor package biomaRt. Nat Protoc. 2009;4:1184–91.

65. Epskamp S, Cramer AO, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: network visualizations of relationships

in psychometric data. J Stat Softw. 2012;24(48):1–8.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Page 27 of 27

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る