リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Stress release process along an intraplate fault analogous to the plate boundary: a case study of the 2017 M5.2 Akita-Daisen earthquake, NE Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Stress release process along an intraplate fault analogous to the plate boundary: a case study of the 2017 M5.2 Akita-Daisen earthquake, NE Japan

Keisuke Yoshida Taka'aki Taira Yoshiaki Matsumoto Tatsuhiko Saito Kentaro Emoto Toru Matsuzawa 東北大学 DOI:10.1029/2020JB019527

2020.04.23

概要

Stress accumulation and release inside the plate remains poorly understood compared to that at the plate boundaries. Spatiotemporal variations in foreshock and aftershock activities can provide key constraints on time‐dependent stress and deformation processes inside the plate. The 2017 M5.2 Akita‐Daisen intraplate earthquake in NE Japan was preceded by intense foreshock activity and triggered a strong sequence of aftershocks. We examine the spatiotemporal distributions of foreshocks and aftershocks and determine the coseismic slip distribution of the mainshock. Our results indicate that seismicity both before and after the mainshock was concentrated on a planar structure with N‐S strike that dips steeply eastward. We observe a migration of foreshocks toward the mainshock rupture area, suggesting the possibility that foreshocks were triggered by aseismic phenomena preceding the mainshock rupture. The mainshock rupture propagated toward the north, showing less slip beneath foreshock regions. The stress drop of the mainshock was 1.4 MPa, and the radiation efficiency was 0.72. Aftershocks were intensely triggered near the edge of large coseismic slip regions where shear stress increased. The aftershock region expanded along the fault strike, which can be attributed to the postseismic aseismic slip of the mainshock. We find that the foreshocks, mainshock, aftershocks, and postseismic slip released stress at different segments along the fault, which may refiect differences in frictional properties. Obtained results were similar to those observed for interplate earthquakes, which supports the hypothesis that the deformation processes along plate boundaries and intraplate faults are fundamentally the same.

この論文で使われている画像

参考文献

Aki, K., & Richards, P. G. (2002). Quantitative seismology. Sausalito, California: University Science Books. https://doi.org/10.1016/S0065- 230X(09)04001-9

Ando, R., & Imanishi, K. (2011). Possibility of Mw 9.0 mainshock triggered by diffusional propagation of after‐slip from Mw 7.3 foreshock. Earth, Planets and Space, 63(7), 767–771. https://doi.org/10.5047/eps.2011.05.016

Ando, R., Nakata, R., & Hori, T. (2010). A slip pulse model with fault heterogeneity for low‐frequency earthquakes and tremor along plate interfaces. Geophysical Research Letters, 37, L10310. https://doi.org/10.1029/2010GL043056

Andrews, D. J. (1976). Rupture velocity of plane strain shear cracks. Journal of Geophysical Research, 81(32), 5679–5687.

Ariyoshi, K., Ampuero, J.‐P., Bürgmann, R., Matsuzawa, T., Hasegawa, A., Hino, R., & Hori, T. (2019). Quantitative relationship between aseismic slip propagation speed and frictional properties. Tectonophysics, 767, 128,151.

Ariyoshi, K., Matsuzawa, T., & Hasegawa, A. (2007). The key frictional parameters controlling spatial variations in the speed of postseismic‐slip propagation on a subduction plate boundary. Earth and Planetary Science Letters, 256(1–2), 136–146.

Asano, Y., Saito, T., Ito, Y., Shiomi, K., Hirose, H., Matsumoto, T., et al. (2011). Spatial distribution and focal mechanisms of aftershocks of the 2011 off the Pacific coast of Tohoku earthquake. Earth, Planets and Space, 63(7), 29.

Asanuma, H., Ishimoto, M., Jones, R. H., Phillips, W. S., & Niitsuma, H. (2001). A variation of the collapsing method to delineate structures inside a microseismic cloud. Bulletin of the Seismological Society of America, 91(1), 154–160. https://doi.org/10.1785/0120000063

Beroza, G. C., & Ide, S. (2011). Slow earthquakes and nonvolcanic tremor. Annual Review of Earth and Planetary Sciences, 39, 271–296.

Blanpied, M. L., Lockner, D. A., & Byerlee, J. D. (1995). Frictional slip of granite at hydrothermal conditions. Journal of Geophysical Research, 100(B7), 13,045–13,064.

Bouchon, M., & Vallée, M. (2003). Observation of long supershear rupture during the magnitude 8.1 Kunlunshan earthquake. Science, 301(5634), 824–826. https://doi.org/10.1126/science.1086832

Burridge, R. (1973). Admissible speeds for plane‐strain self‐similar shear cracks with friction but lacking cohesion. Geophysical Journal International, 35(4), 439–455.

Chen, X., Shearer, P. M., & Abercrombie, R. E. (2012). Spatial migration of earthquakes within seismic clusters in Southern California: Evidence for fiuid diffusion. Journal of Geophysical Research, 117, B04301. https://doi.org/10.1029/2011JB008973

Dahm, T. (1996). Relative moment tensor inversion based on ray theory: Theory and synthetic tests. Geophysical Journal International, 124(1), 245–257.

Das, S., & Henry, C. (2003). Spatial relation between main earthquake slip and its aftershock distribution. Reviews of Geophysics, 41(3), 1013. https://doi.org/10.1029/2002RG000119

Dieterich, J. (1994). A constitutive law for rate of earthquake production and its application to earthquake clustering. Journal of Geophysical Research, 99(B2), 2601–2618. https://doi.org/10.1029/93JB02581

Dodge, D. A., Beroza, G. C., & Ellsworth, W. L. (1996). Detailed observations of California foreshock sequences: Implications for the earthquake initiation process. Journal of Geophysical Research, 101(B10), 22,371–22,392.

Ebel, J. E., & Chambers, D. W. (2016). Using the locations of M ≥ 4 earthquakes to delineate the extents of the ruptures of past major earthquakes. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 207(2), 862–875.

Frank, W. B., Poli, P., & Perfettini, H. (2017). Mapping the rheology of the Central Chile subduction zone with aftershocks. Geophysical Research Letters, 44, 5374–5382. https://doi.org/10.1002/2016GL072288

Freed, A. M. (2007). Afterslip (and only afterslip) following the 2004 Parkfield, California, earthquake. Geophysical Research Letters, 34(6).

Freund, L. B. (1972). Crack propagation in an elastic solid subjected to general loading—I. Constant rate of extension. Journal of the Mechanics and Physics of Solids, 20(3), 129–140.

Fukuyama, E. (1998). Automated seismic moment tensor determination by using on‐line broadband seismic waveforms. Zisin, 2(51), 149–156.

Geller, R. J. (1976). Scaling relations for earthquake source parameters and magnitudes. Bulletin of the Seismological Society of America, 66.

Hainzl, S., & Ogata, Y. (2005). Detecting fiuid signals in seismicity data through statistical earthquake modeling. Journal of Geophysical Research, 110, B05S07. https://doi.org/10.1029/2004JB003247

Hardebeck, J. L. (2012). Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophysical Research Letters, 39(21), 1–6. https://doi.org/10.1029/2012GL053438

Hartzell, B. Y. S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bulletin of the Seismological Society of America, 73(6), 1553–1583.

Hartzell, S. H. (1978). Earthquakes aftershocks as Green's functions. Geophysical Research Letters, 5(1), 1–4. https://doi.org/10.1029/ GL005i001p00001

Hasegawa, A., Umino, N., & Takagi, A. (1978). Double‐planed structure of the deep seismic zone in the northeastern Japan arc. Tectonophysics, 47(1–2), 43–58. https://doi.org/10.1016/0040-1951(78)90150-6

Hasegawa, A., & Yoshida, K. (2015). Preceding seismic activity and slow slip events in the source area of the 2011 Mw 9.0 Tohoku‐Oki earthquake: a review. Geoscience Letters, 2(1). https://doi.org/10.1186/s40562-015-0025-0

Hasegawa, A., Yoshida, K., & Okada, T. (2011). Nearly complete stress drop in the 2011 M w 9.0 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63(7), 703–707. https://doi.org/10.5047/eps.2011.06.007

Hasegawa, A., Yoshida, K., Asano, Y., Okada, T., Iinuma, T., & Ito, Y. (2012). Change in stress field after the 2011 great Tohoku-Oki earthquake. Earth and Planetary Science Letters, 355‐356, 231–243. https://doi.org/10.1016/j.epsl.2012.08.042

Hashimoto, C., Noda, A., Sagiya, T., & Matsu'ura, M. (2009). Interplate seismogenic zones along the Kuril–Japan trench inferred from GPS data inversion. Nature Geoscience, 2(2), 141.

Hawthorne, J. C., Simons, M., & Ampuero, J.‐P. (2016). Estimates of aseismic slip associated with small earthquakes near San Juan Bautista, CA. Journal of Geophysical Research: Solid Earth, 121, 8254–8275. https://doi.org/10.1002/2016JB013120

Hearn, E. H., Bürgmann, R., & Reilinger, R. E. (2002). Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter. Bulletin of the Seismological Society of America, 92(1), 172–193.

Heki, K., Miyazaki, S., & Tsuji, H. (1997). Silent fault slip following an interplate thrust earthquake at the Japan Trench. Nature, 386(6625), 595.

Helmstetter, A., & Shaw, B. E. (2009). Afterslip and aftershocks in the rate‐and‐state friction law. Journal of Geophysical Research, 114, B01308. https://doi.org/10.1029/2007JB005077

Hirose, H., Hirahara, K., Kimata, F., Fujii, N., & Miyazaki, S. (1999). A slow thrust slip event following the two 1996 Hyuganada earth- quakes beneath the Bungo Channel, southwest Japan. Geophysical Research Letters, 26(21), 3237–3240.

Hsu, Y. J., Simons, M., Avouac, J. P., Galeteka, J., Sieh, K., Chlieh, M., et al. (2006). Frictional afterslip following the 2005 Nias‐Simeulue earthquake, Sumatra. Science, 312(5782), 1921–1926. https://doi.org/10.1126/science.1126960

Ida, Y. (1972). Cohesive force across the tip of a longitudinal‐shear crack and Griffith's specific surface energy. Journal of Geophysical Research, 77(20), 3796–3805.

Ide, S., Beroza, G. C., Shelly, D. R., & Uchide, T. (2007). A scaling law for slow earthquakes. Nature, 447(7140), 76–79. https://doi.org/ 10.1038/nature05780

Iinuma, T., Hino, R., Uchida, N., Nakamura, W., Kido, M., Osada, Y., & Miura, S. (2016). Seafioor observations indicate spatial separation of coseismic and postseismic slips in the 2011 Tohoku earthquake. Nature Communications, 7, 13,506.

Iinuma, T., Ohzono, M., Ohta, Y., & Miura, S. (2011). Coseismic slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake (M 9.0) estimated based on GPS data—Was the asperity in Miyagi‐oki ruptured? Earth, Planets and Space, 63(7), 24.

Iio, Y., Sagiya, T., Kobayashi, Y., & Shiozaki, I. (2002). Water‐weakened lower crust and its role in the concentrated deformation in the Japanese Islands. Earth and Planetary Science Letters, 203(1), 245–253.

Ito, Y., Hino, R., Kido, M., Fujimoto, H., Osada, Y., Inazu, D., et al. (2013). Episodic slow slip events in the Japan subduction zone before the 2011 Tohoku-Oki earthquake. Tectonophysics, 600, 14–26.

Johanson, I. A., Fielding, E. J., Rolandone, F., & Bürgmann, R. (2006). Coseismic and postseismic slip of the 2004 Parkfield earthquake from space‐geodetic data. Bulletin of the Seismological Society of America, 96(4B), S269–S282.

Kagan, Y. Y. (1991). 3‐D rotation of double‐couple earthquake sources. Geophysical Journal International, 106(3), 709–716.

Kanamori, H., & Rivera, L. (2006). Energy partitioning during an earthquake. Washington, DC: American Geophysical Union.

Kato, A., & Igarashi, T. (2012). Regional extent of the large coseismic slip zone of the 2011 Mw 9.0 Tohoku‐Oki earthquake delineated by on‐fault aftershocks. Geophysical Research Letters, 39, L15301. https://doi.org/10.1029/2012GL052220

Kato, A., Obara, K., Igarashi, T., Tsuruoka, H., Nakagawa, S., & Hirata, N. (2012). Propagation of slow slip leading up to the 2011 Mw 9.0 Tohoku‐Oki earthquake. Science, 335(6069), 705–708. https://doi.org/10.1126/science.1215141

Kato, A., Sakai, S., & Obara, K. (2011). A normal‐faulting seismic sequence triggered by the 2011 off the Pacific coast of Tohoku earthquake: Wholesale stress regime changes in the upper plate. Earth, Planets and Space, 63(7), 745–748. https://doi.org/10.5047/eps.2011.06.014

Kato, N. (2004). Interaction of slip on asperities: Numerical simulation of seismic cycles on a two‐dimensional planar fault with nonuni-form frictional property. Journal of Geophysical Research, 109, B12306. https://doi.org/10.1029/2004JB003001

Kato, N. (2007). Expansion of aftershock areas caused by propagating post‐seismic sliding. Geophysical Journal International, 168(2), 797–808.

Kawasaki, I., Asai, Y., & Tamura, Y. (2001). Space–time distribution of interplate moment release including slow earthquakes and the seismo‐geodetic coupling in the Sanriku‐oki region along the Japan trench. Tectonophysics, 330, 267–283. https://doi.org/10.1016/S0040- 1951(00)00245-6

Kikuchi, M., & Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491–506.

Kilb, D., & Rubin, A. M. (2002). Implications of diverse fault orientations imaged in relocated aftershocks of the Mount Lewis, ML 5.7, California, earthquake. Journal of Geophysical Research, 107(B11), 2294. https://doi.org/10.1029/2001jb000149

King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953.

Knopoff, L. (1958). Energy release in earthquakes. Geophysical Journal of the Royal Astronomical Society, 1(1), 44–52. https://doi.org/ 10.1111/j.1365-246X.1958.tb00033.x

Lawson, C. L., & Hanson, R. J. (1995). Solving least squares problems (Vol. 15). Philadelphia, Pennsylvania, United States: Siam.

Lay, T., Ammon, C. J., Hutko, A. R., & Kanamori, H. (2010). Effects of kinematic constraints on teleseismic finite‐source rupture inversions: Great Peruvian earthquakes of 23 June 2001 and 15 August 2007. Bulletin of the Seismological Society of America, 100(3), 969–994.

Lay, T., & Kanamori, H. (1981). An asperity model of large earthquake sequences. In Earthquake prediction, Maurice Ewing series, (pp. 579–592). Washington, D. C: American Geophysical Union.

Lengliné, O., Enescu, B., Peng, Z., & Shiomi, K. (2012). Decay and expansion of the early aftershock activity following the 2011, Mw9. 0 Tohoku earthquake. Geophysical Research Letters, 39, L18309. https://doi.org/10.1029/2012GL052797

Ligorría, J. P., & Ammon, C. J. (1999). Iterative deconvolution and receiver‐function estimation. Bulletin of the Seismological Society of America, 89(5), 1395–1400. https://doi.org/10.1016/S0304-3940(97)00816-1

Linde, A. T., Gladwin, M. T., Johnston, M. J. S., Gwyther, R. L., & Bilham, R. G. (1996). A slow earthquake sequence on the San Andreas fault. Nature, 383(6595), 65.

Liu, Y., & Rice, J. R. (2005). Aseismic slip transients emerge spontaneously in three‐dimensional rate and state modeling of subduction earthquake sequences. Journal of Geophysical Research, 110, B08307. https://doi.org/10.1029/2004JB003424

Lohman, R. B., & McGuire, J. J. (2007). Earthquake swarms driven by aseismic creep in the Salton Trough, California. Journal of Geophysical Research, 112, B04405. https://doi.org/10.1029/2006JB004596

Marone, C. J., Scholtz, C. H., & Bilham, R. (1991). On the mechanics of earthquake afterslip. Journal of Geophysical Research, 96(B5), 8441–8452.

Matsu’ura, M., Kataoka, H., & Shibazaki, B. (1992). Slip‐dependent friction law and nucleation processes in earthquake rupture. Tectonophysics, 211(1–4), 135–148.

Matsu'ura, M., & Sato, T. (1989). A dislocation model for the earthquake cycle at convergent plate boundaries. Geophysical Journal International, 96(1), 23–32.

Matsuzawa, T., Igarashi, T., & Hasegawa, A. (2002). Characteristic small‐earthquake sequence off Sanriku, northeastern Honshu, Japan. Geophysical Research Letters, 29(11), 1543. https://doi.org/10.1029/2001GL014632

McGuire, J. J., Boettcher, M. S., & Jordan, T. H. (2005). Foreshock sequences and short‐term earthquake predictability on East Pacific Rise transform faults. Nature, 434(7032), 457–461. https://doi.org/10.1038/nature03377

McGuire, J. J., & Jordan, T. H. (2000). Further evidence for the compound nature of slow earthquakes: The Prince Edward Island earth- quake of April 28, 1997. Journal of Geophysical Research, 105(B4), 7819–7827.

Mendoza, C., & Hartzell, S. H. (1988). Aftershock patterns and main shock faulting. Bulletin of the Seismological Society of America, 78(4), 1438–1449.

Meneses‐Gutierrez, A., & Sagiya, T. (2016). Persistent inelastic deformation in central Japan revealed by GPS observation before and after the Tohoku‐oki earthquake. Earth and Planetary Science Letters, 450, 366–371.

Miura, S., Iinuma, T., Yui, S., Uchida, N., Sato, T., Tachibana, K., & Hasegawa, A. (2006). Co‐ and post‐seismic slip associated with the 2005 Miyagi‐oki earthquake (M7.2) as inferred from GPS data. Earth, Planets and Space, 58(12), 1567–1572.

Miyazaki, S., Segall, P., Fukuda, J., & Kato, T. (2004). Space time distribution of afterslip following the 2003 Tokachi‐oki earthquake: Implications for variations in fault zone frictional properties. Geophysical Research Letters, 31, L06623. https://doi.org/10.1029/2003GL019410

Mori, J., & Hartzell, S. (1990). Source inversion of the 1988 Upland, California, earthquake: determination of a fault plane for a small event. Bulletin ‐ Seismological Society of America.

Moriya, H., Fujita, T., Niitsuma, H., Eisenblätter, J., & Manthei, G. (2006). Analysis of fracture propagation behavior using hydraulically induced acoustic emissions in the Bernburg salt mine, Germany. International Journal of Rock Mechanics and Mining Sciences, 43(1), 49–57. https://doi.org/10.1016/j.ijrmms.2005.04.003

Murakami, M., Suito, H., Ozawa, S., & Kaidzu, M. (2006). Earthquake triggering by migrating slow slip initiated by M8 earthquake along Kuril Trench, Japan. Geophysical Research Letters, 33, L09306. https://doi.org/10.1029/2006GL025967

Nadeau, R. M., & Johnson, L. R. (1998). Seismological studies at Parkfield VI: moment release rates and estimates of source parameters for small repeating earthquakes. Bulletin of the Seismological Society of America, 88(3), 790–814.

Nakamura, W., Uchida, N., & Matsuzawa, T. (2016). Spatial distribution of the faulting types of small earthquakes around the 2011 Tohoku‐oki earthquake: A comprehensive search using template events. Journal of Geophysical Research: Solid Earth, 121, 2591–2607. https://doi.org/10.1002/2015JB012584

Nanjo, K. Z., Hirata, N., Obara, K., & Kasahara, K. (2012). Decade‐scale decrease in b value prior to the M9‐class 2011 Tohoku and 2004 Sumatra quakes. Geophysical Research Letters, 39, L20304. https://doi.org/10.1029/2012GL052997

National Research Institute for Earth Science and Disaster Resilience (2019a). NIED Hi‐net. Natl. Res. Inst. Earth Sci. Disaster Resil. https://doi.org/10.17598/NIED.0003

National Research Institute for Earth Science and Disaster Resilience (2019b). NIED K‐NET, KiK‐net. Natl. Res. Inst. Earth Sci. Disaster Resil. https://doi.org/10.17598/NIED.0004

Nishimura, T., Miura, S., Tachibana, K., Hashimoto, K., Sato, T., Hori, S., et al. (2000). Distribution of seismic coupling on the subducting plate boundary in northeastern Japan inferred from GPS observations. Tectonophysics, 323(3–4), 217–238. https://doi.org/10.1016/ S0040-1951(00)00108-6

Noda, A., Saito, T., & Fukuyama, E. (2018). Slip‐deficit rate distribution along the Nankai Trough, Southwest Japan, with elastic litho- sphere and viscoelastic asthenosphere. Journal of Geophysical Research: Solid Earth, 123, 8125–8142. https://doi.org/10.1029/2018JB015515

Noda, A., Saito, T., Fukuyama, E., Terakawa, T., Tanaka, S., & Matsu'ura, M. (2020). 3‐D spatial distribution of shear strain energy changes associated with the 2016 Kumamoto earthquake sequence, southwest Japan. Geophysical Research Letters, 47, e2019GL086369. https:// doi.org/10.1029/2019GL086369

Noda, H., Lapusta, N., & Kanamori, H. (2013). Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics. Geophysical Journal International, 193(3), 1691–1712.

Ohnaka, M., & Kuwahara, Y. (1990). Characteristic features of local breakdown near a crack‐tip in the transition zone from nucleation to unstable rupture during stick‐slip shear failure. Tectonophysics, 175(1–3), 197–220.

Okada, T., Matsuzawa, T., Umino, N., Yoshida, K., Hasegawa, A., Takahashi, H., et al. (2016). Hypocenter migration and crustal seismic velocity distribution observed for the inland earthquake swarms induced by the 2011 Tohoku‐Oki earthquake in NE Japan: Implications for crustal fiuid distribution and crustal permeability. In Crustal Permeability. https://doi.org/10.1002/9781119166573.ch24

Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half‐space. Bulletin of the Geological Society of America, 97(B5), 7137–1040. https://doi.org/10.1029/92JB00178

Parotidis, M., Rothert, E., & Shapiro, S. A. (2003). Pore‐pressure diffusion: A possible triggering mechanism for the earthquake swarms 2000 in Vogtland/NW‐Bohemia, central Europe. Geophysical Research Letters, 30(20), 2075. https://doi.org/10.1029/2003GL018110

Peng, Z., & Zhao, P. (2009). Migration of early aftershocks following the 2004 Parkfield earthquake. Nature Geoscience, 2(12), 877.

Perfettini, H., & Avouac, J.‐P. (2004). Postseismic relaxation driven by brittle creep: A possible mechanism to reconcile geodetic mea-surements and the decay rate of aftershocks, application to the Chi‐Chi earthquake, Taiwan. Journal of Geophysical Research, 109, B02304. https://doi.org/10.1029/2003JB002488

Perfettini, H., Frank, W. B., Marsan, D., & Bouchon, M. (2018). A model of aftershock migration driven by afterslip. Geophysical Research Letters, 45, 2283–2293. https://doi.org/10.1002/2017GL076287

Pritchard, M. E., & Simons, M. (2006). An aseismic slip pulse in northern Chile and along‐strike variations in seismogenic behavior. Journal of Geophysical Research, 111, B08405. https://doi.org/10.1029/2006JB004258

Rice, J. R. (1992). Fault stress states, pore pressure distributions, and the weakness of the San Andreas fault. In International geophysics (Vol. 51, pp. 475–503). Massachusetts, Cambridge: Elsevier.

Rice, J. R., & Gu, J. (1983). Earthquake aftereffects and triggered seismic phenomena. Pure and Applied Geophysics, 121(2), 187–219.

Roland, E., & McGuire, J. J. (2009). Earthquake swarms on transform faults. Geophysical Journal International, 178(3), 1677–1690. https:// doi.org/10.1111/j.1365-246X.2009.04214.x

Ross, Z. E., Hauksson, E., & Ben‐Zion, Y. (2017). Abundant off‐fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 3(3), e1601946. https://doi.org/10.1126/sciadv.1601946

Ross, Z. E., Idini, B., Jia, Z., Stephenson, O. L., Zhong, M., Wang, X., et al. (2019). Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 366(6463), 346–351. https://doi.org/10.1126/science.aaz0109

Ross, Z. E., Kanamori, H., & Hauksson, E. (2017). Anomalously large complete stress drop during the 2016 Mw5.2 Borrego Springs earth- quake inferred by waveform modeling and near‐source aftershock deficit. Geophysical Research Letters, 44, 5994–6001. https://doi.org/ 10.1002/2017GL073338

Ross, Z. E., Kanamori, H., Hauksson, E., & Aso, N. (2018). Dissipative intraplate faulting during the 2016 Mw6.2 Tottori, Japan earthquake. Journal of Geophysical Research: Solid Earth, 123, 1631–1642. https://doi.org/10.1002/2017JB015077

Ryder, I., & Bürgmann, R. (2008). Spatial variations in slip deficit on the central San Andreas fault from InSAR. Geophysical Journal International, 175(3), 837–852.

Saito, T., & Noda, A. (2020). Strain energy released by earthquake faulting with random slip components. Geophysical Journal International, 220(3), 2009–2020.

Saito, T., Noda, A., Yoshida, K., & Tanaka, S. (2018). Shear strain energy change caused by the interplate coupling along the Nankai Trough: An integration analysis using stress tensor inversion and slip‐deficit inversion. Journal of Geophysical Research: Solid Earth, 123, 5975–5986. https://doi.org/10.1029/2018JB015839

Savage, J. C. (1969). Steketee's paradox. Bulletin of the Seismological Society of America, 59(1), 381–384.

Savage, J. C. (1983). A dislocation model of strain accumulation and release at a subduction zone. Journal of Geophysical Research, 88(B6), 4984–4996.

Schaff, D. P., Beroza, G. C., & Shaw, B. E. (1998). Postseismic response of repeating aftershocks. Geophysical Research Letters, 25(24), 4549–4552.

Shao, G., Ji, C., & Hauksson, E. (2012). Rupture process and energy budget of the 29 July 2008 Mw5.4 Chino Hills, California, earthquake. Journal of Geophysical Research, 117, B07307. https://doi.org/10.1029/2011JB008856

Shapiro, S. A., Huenges, E., & Borm, G. (1997). Estimating the crust permeability from fiuid‐injection‐induced seismic emission at the KTB site. Geophysical Journal International, 131(2). https://doi.org/10.1111/j.1365-246X.1997.tb01215.x

Shelly, D. R., Hill, D. P., Massin, F., Farrell, J., Smith, R. B., & Taira, T. (2013). A fiuid‐driven earthquake swarm on the margin of the Yellowstone caldera. Journal of Geophysical Research: Planets, 118, 4872–4886. https://doi.org/10.1002/jgrb.50362

Shelly, D. R., Moran, S. C., & Thelen, W. A. (2013). Evidence for fiuid‐triggered slip in the 2009 Mount Rainier, Washington earthquake swarm. Geophysical Research Letters, 40, 1506–1512. https://doi.org/10.1002/grl.50354

Shelly, D. R., Taira, T., Prejean, S. G., Hill, D. P., & Dreger, D. S. (2015). Fluid‐faulting interactions: Fracture‐mesh and fault‐valve behavior in the February 2014 Mammoth Mountain, California, earthquake swarm. Geophysical Research Letters, 42, 5803–5812. https://doi.org/ 10.1002/2015GL064325

Shi, Y., & Bolt, B. A. (1982). The standard error of the magnitude‐frequency b value. Bulletin of the Seismological Society of America, 72(5), 1677–1687.

Shibazaki, B., & Iio, Y. (2003). On the physical mechanism of silent slip events along the deeper part of the seismogenic zone. Geophysical Research Letters, 30(9), 1489. https://doi.org/10.1029/2003GL017047

Shimamura, K., Matsuzawa, T., Okada, T., Uchida, N., Kono, T., & Hasegawa, A. (2011). Similarities and differences in the rupture process of the M ~ 4.8 repeating‐earthquake sequence off Kamaishi, Northeast Japan: Comparison between the 2001 and 2008 events. Bulletin of the Seismological Society of America, 101(5), 2355–2368.

Sibson, R. H. (1992). Implications of fault‐valve behaviour for rupture nucleation and recurrence. Tectonophysics, 211(1–4), 283–293. https://doi.org/10.1016/0040-1951(92)90065-E

Smith, D. E., & Dieterich, J. H. (2010). Aftershock sequences modeled with 3‐D stress heterogeneity and rate‐state seismicity equations: Implications for crustal stress estimation. In Seismogenesis and earthquake forecasting: The Frank Evison volume II (pp. 213–231). New York City: Springer.

Smith, D. E., & Heaton, T. H. (2011). Models of stochastic, spatially varying stress in the crust compatible with focal‐mechanism data, and how stress inversions can be biased toward the stress rate. Bulletin of the Seismological Society of America, 101(3), 1396–1421. https://doi. org/10.1785/0120100058

Suwa, Y., Miura, S., Hasegawa, A., Sato, T., & Tachibana, K. (2006). Interplate coupling beneath NE Japan inferred from three‐dimensional displacement field. Journal of Geophysical Research, 111, B04402. https://doi.org/10.1029/2004JB003203

Suyehiro, S. (1966). Difference between aftershocks and foreshocks in the relationship of magnitude to frequency of occurrence for the great Chilean earthquake of 1960. Bulletin of the Seismological Society of America, 56(1), 185–200.

Tamaribuchi, K., Yagi, Y., Enescu, B., & Hirano, S. (2018). Characteristics of foreshock activity inferred from the JMA earthquake catalog. Earth, Planets and Space, 70(1), 90.

Terakawa, T., Hashimoto, C., & Matsu’ura, M. (2013). Changes in seismic activity following the 2011 Tohoku‐oki earthquake: Effects of pore fiuid pressure. Earth and Planetary Science Letters, 365, 17–24. https://doi.org/10.1016/j.epsl.2013.01.017

Tormann, T., Wiemer, S., Enescu, B., & Woessner, J. (2016). Normalized rupture potential for small and large earthquakes along the Pacific Plate off Japan. Geophysical Research Letters, 43, 7468–7477. https://doi.org/10.1002/2016GL069309

Tse, S. T., & Rice, J. R. (1986). Crustal earthquake instability in relation to the depth variation of frictional slip properties. Journal of Geophysical Research, 91(B9), 9452–9472.

Uchida, N., Hasegawa, A., Matsuzawa, T., & Igarashi, T. (2004). Pre‐ and post‐seismic slow slip on the plate boundary off Sanriku, NE Japan associated with three interplate earthquakes as estimated from small repeating earthquake data. Tectonophysics, 385(1–4), 1–15.

Uchida, N., & Matsuzawa, T. (2013). Pre‐ and postseismic slow slip surrounding the 2011 Tohoku‐oki earthquake rupture. Earth and Planetary Science Letters, 374, 81–91.

Uchida, N., Yui, S., Miura, S., Matsuzawa, T., Hasegawa, A., Motoya, Y., & Kasahara, M. (2009). Quasi‐static slip on the plate boundary associated with the 2003 M8.0 Tokachi‐oki and 2004 M7.1 off‐Kushiro earthquakes, Japan. Gondwana Research, 16(3–4), 527–533.

Urata, Y., Yoshida, K., Fukuyama, E., & Kubo, H. (2017). 3‐D dynamic rupture simulations of the 2016 Kumamoto, Japan, earthquake. 4. Seismology. Earth, Planets and Space, 69(1), 150. https://doi.org/10.1186/s40623-017-0733-0

Vassiliou, M. S., & Kanamori, H. (1982). The energy release in earthquakes. Bulletin of the Seismological Society of America, 72(2), 371–387.

Venkataraman, A., & Kanamori, H. (2004). Observational constraints on the fracture energy of subduction zone earthquakes. Journal of Geophysical Research, 109, B05302. https://doi.org/10.1029/2003JB002549

Vidale, J. E., Boyle, K. L., & Shearer, P. M. (2006). Crustal earthquake bursts in California and Japan: Their patterns and relation to vol-canoes. Geophysical Research Letters, 33(20), 1–5. https://doi.org/10.1029/2006GL027723

Vidale, J. E., & Shearer, P. M. (2006). A survey of 71 earthquake bursts across southern California: Exploring the role of pore fiuid pressure fiuctuations and aseismic slip as drivers. Journal of Geophysical Research, 111, B05312. https://doi.org/10.1029/2005JB004034

Viesca, R. C., & Dublanchet, P. (2019). The slow slip of viscous faults. Journal of Geophysical Research: Solid Earth, 124(5), 4959–4983.

Waldhauser, F., & Ellsworth, W. L. (2000). A double‐difference earthquake location algorithm: Method and application to the northern Hayward Fault, California. Bulletin of the Seismological Society of America, 90(6), 1353–1368. https://doi.org/10.1785/0120000006

Wang, L., Hainzl, S., Zöller, G., & Holschneider, M. (2012). Stress‐ and aftershock‐constrained joint inversions for coseismic and post-seismic slip applied to the 2004 M6.0 Parkfield earthquake. Journal of Geophysical Research, 117, B07406. https://doi.org/10.1029/2011JB009017

Wessel, P., & Smith, W. H. F. (1998). New, improved version of generic mapping tools released. Eos, Transactions American Geophysical Union, 79(47), 579–579. https://doi.org/10.1029/98EO00426

Wesson, R. L. (1987). Modelling aftershock migration and afterslip of the San Juan Bautista, California, earthquake of October 3, 1972. Tectonophysics, 144(1–3), 215–229.

Wetzler, N., Lay, T., Brodsky, E. E., & Kanamori, H. (2018). Systematic deficiency of aftershocks in areas of high coseismic slip for large subduction zone earthquakes. Science Advances, 4(2), 1–10. https://doi.org/10.1126/sciadv.aao3225

Woessner, J., Schorlemmer, D., Wiemer, S., & Mai, P. M. (2006). Spatial correlation of aftershock locations and on‐fault main shock properties. Journal of Geophysical Research, 111, B08301. https://doi.org/10.1029/2005JB003961

Xia, K., Rosakis, A. J., & Kanamori, H. (2004). Laboratory earthquakes: The sub‐Rayleigh‐to‐supershear rupture transition. Science, 303(5665), 1859–1861.

Xue, L., Bürgmann, R., Shelly, D. R., Johnson, C. W., & Taira, T. (2018). Kinematics of the 2015 San Ramon, California earthquake swarm: Implications for fault zone structure and driving mechanisms. Earth and Planetary Science Letters, 489, 135–144. https://doi.org/ 10.1016/j.epsl.2018.02.018

Yabe, S., & Ide, S. (2018). Variations in precursory slip behavior resulting from frictional heterogeneity. Progress in Earth and Planetary Science, 5(1), 43.

Yabe, Y., Nakatani, M., Naoi, M., Philipp, J., Janssen, C., Watanabe, T., et al. (2015). Nucleation process of an M2 earthquake in a deep gold mine in South Africa inferred from on‐fault foreshock activity. Journal of Geophysical Research: Solid Earth, 120, 5574–5594. https://doi. org/10.1002/2014JB011680

Yamanaka, Y., & Kikuchi, M. (2004). Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data. Journal of Geophysical Research, 109, B07307. https://doi.org/10.1029/2003JB002683

Yoshida, K. (2019). Prevalence of asymmetrical rupture in small earthquakes and its effect on the estimation of stress drop: A systematic investigation in inland Japan. Geoscience Letters, 6(1), 16.

Yoshida, K., & Hasegawa, A. (2018a). Hypocenter migration and seismicity pattern change in the Yamagata‐Fukushima border, NE Japan, caused by fiuid movement and pore pressure variation. Journal of Geophysical Research: Solid Earth, 123, 5000–5017. https://doi.org/ 10.1029/2018JB015468

Yoshida, K., & Hasegawa, A. (2018b). Sendai‐Okura earthquake swarm induced by the 2011 Tohoku‐Oki earthquake in the stress shadow of NE Japan: Detailed fault structure and hypocenter migration. Tectonophysics, 733(August 2017), 132–147. https://doi.org/10.1016/j. tecto.2017.12.031

Yoshida, K., Hasegawa, A., & Okada, T. (2015). Spatially heterogeneous stress field in the source area of the 2011 Mw 6.6 Fukushima‐Hamadori earthquake, NE Japan, probably caused by static stress change. Geophysical Journal International, 201(2), 1062–1071. https://doi.org/10.1093/gji/ggv068

Yoshida, K., Hasegawa, A., & Okada, T. (2016). Heterogeneous stress field in the source area of the 2003 M6.4 Northern Miyagi Prefecture, NE Japan, earthquake. Geophysical Journal International, 206(1), 408–419. https://doi.org/10.1093/gji/ggw160

Yoshida, K., Hasegawa, A., Okada, T., & Iinuma, T. (2014). Changes in the stress field after the 2008 M7.2 Iwate‐Miyagi Nairiku earthquake in northeastern Japan. Journal of Geophysical Research: Solid Earth, 119, 9016–9030. https://doi.org/10.1002/2014JB011291

Yoshida, K., Hasegawa, A., Okada, T., Iinuma, T., Ito, Y., & Asano, Y. (2012). Stress before and after the 2011 great Tohoku‐oki earthquake and induced earthquakes in inland areas of eastern Japan. Geophysical Research Letters, 39, L03302. https://doi.org/10.1029/ 2011GL049729

Yoshida, K., Hasegawa, A., & Yoshida, T. (2016a). Temporal variation of frictional strength in an earthquake swarm in NE Japan caused by fiuid migration. Journal of Geophysical Research: Solid Earth, 121, 5953–5965. https://doi.org/10.1002/2016JB013022

Yoshida, K., Hasegawa, A., & Yoshida, T. (2016b). Temporal variation of frictional strength in an earthquake swarm in NE Japan caused by fiuid migration. Journal of Geophysical Research: Solid Earth, 121(8), 5953–5965. https://doi.org/10.1002/2016JB013022

Yoshida, K., Hasegawa, A., Yoshida, T., & Matsuzawa, T. (2019). Heterogeneities in stress and strength in Tohoku and its relationship with earthquake sequences triggered by the 2011 M9 Tohoku‐Oki earthquake. Pure and Applied Geophysics, 176(3), 1335–1355.

Yoshida, K., Saito, T., Emoto, K., Urata, Y., & Sato, D. (2019). Rupture directivity, stress drop, and hypocenter migration of small‐ and moderate‐sized earthquakes in the Yamagata‐Fukushima border swarm triggered by upward pore‐pressure migration after the 2011 Tohoku‐Oki earthquake. Tectonophysics.

Yoshida, K., Saito, T., Urata, Y., Asano, Y., & Hasegawa, A. (2017). Temporal changes in stress drop, frictional strength, and earthquake size distribution in the 2011 Yamagata‐Fukushima, NE Japan, earthquake swarm, caused by fiuid migration. Journal of Geophysical Research: Solid Earth, 122, 10,379–10,397. https://doi.org/10.1002/2017JB014334

Yukutake, Y., Ito, H., Honda, R., Harada, M., Tanada, T., & Yoshida, A. (2011). Fluid‐induced swarm earthquake sequence revealed by precisely determined hypocenters and focal mechanisms in the 2009 activity at Hakone volcano, Japan. Journal of Geophysical Research, 116, B04308. https://doi.org/10.1029/2010JB008036

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る