リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ultrafast transient absorption spectroscopy using attosecond soft X-ray pulses in the water window」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ultrafast transient absorption spectroscopy using attosecond soft X-ray pulses in the water window

齋藤, 成之 東京大学 DOI:10.15083/0002004685

2022.06.22

概要

Eighteen years have passed since the birth of attosecond spectroscopy in 2001, and its technology has made significant progress. One notable advance is the development of soft X-ray (SX, 200-2000 eV) attosecond science. The first attosecond pulse was generated by high-harmonic generation (HHG) with a femtosecond Ti:sapphire (Ti:Sa) laser, and its photon energy was around 100 eV, in the extreme ultraviolet (XUV) region (10-200 eV). Recently, by using infrared (IR, 1-3 µm) or mid-infrared (MIR, 3-10 µm) optical parametric amplifiers (OPAs) and optical parametric chirped-pulse amplifiers (OPCPAs) as drive sources, the photon energy of high harmonics (HHs) has been significantly extended. So far, the highest photon energy of 1.6 keV was demonstrated in 2012. Such attosecond pulses can be utilized for element-specific X-ray spectroscopy at various absorption edges in the SX region. Especially, HHG-based X-ray absorption spectroscopy (XAS) in the “water window” region, which ranges from the C K-edge (284 eV) to the O K-edge (543 eV), is intensively investigated. The water window region contains the K-edges of C, N, and O. If attosecond spectroscopy at these edges becomes possible, fundamental dynamics of various important materials such as biomolecules, organic solar cells, and photocatalysis are expected to be revealed. However, until now, HHG-based time-resolved XAS, or X-ray transient absorption spectroscopy, has only been established up to the C Kedge. Compared to the highest photon energy of 1.6 keV, this photon energy (284 eV) is much lower. This is because transient absorption spectroscopy requires much more SX photons than a static XAS measurement; in a transient absorption measurement, many absorption spectra have to be measured for many pump-probe delays. Since the photon flux of IR- or MIR-driven HHG is more than ∼3 orders of magnitude lower than that of Ti:Sa-driven HHG, it is not easy to obtain sufficient photons for transient absorption spectroscopy.

In this dissertation, the realization of HHG-based transient absorption spectroscopy at the N K-edge (400 eV) in the water window is presented. This is achieved by the combination of a powerful IR light source, an efficient HHG scheme, and a robust and stable transient absorption beamline. From the measured transient absorption spectra of nitric oxide (NO) and nitrous oxide (N2O), electronic, vibrational, and rotational dynamics is successfully extracted, which demonstrates the versatility of HHG-based transient absorption in the SX region. Moreover, novel ultrafast phenomena such as intramolecular position-specific electronic dynamics and molecular alignment of cations are revealed. We believe that these results will deepen the understandings of photoinduced molecular dynamics, and will be a base to apply transient absorption measurements to more complex systems such as liquids or solids.

The dissertation comprises eight chapters. In Chapter 1, a general introduction is given to clarify the motivation and the purpose of the research. In Chapter 2, a detailed theoretical and experimental background is described. In Chapter 3, the IR light source employed in the research is presented. It is a BiB3O6-based OPCPA system, which delivers intense, phase-stable, 10-fs pulses at 1.6 µm. In addition to the description of the light source, a new waveform characterization method of IR pulses is presented. In Chapter 4, the details of the HHG and the transient absorption beamline are described. The HHG setup consists of a semi-infinite HHG gas cell and a two-stage differential pumping system, which enables efficient SX generation. The transient absorption beamline is equipped with an attosecond delay stabilization system to achieve high delay controllability required for transient absorption spectroscopy using attosecond pulses. In Chapter 5, measured properties of the generated SX HHs are presented. Figure 1 plots the measured HH spectra from He and Ne. It is visible that the HH spectrum from He reaches 500 eV, covering a large part of the water window region. In Chapters 6 and 7, the results of transient absorption experiments at the N K-edge are presented. First, in Chapter 6, NO is used as the target of transient absorption. Figure 2 shows the measured transient absorption trace. From the measured transient absorption spectra, signatures of electronic dynamics, vibrational dynamics, and rotational dynamics is extracted. Second, in Chapter 7, N2O is used as the target. Different from NO, N2O has two absorption edges at the N K-edge which originate from two nitrogen atoms in the molecule. In the measured transient absorption spectra, different absorption changes in the two edges are found, implying the existence of intramolecular positionspecific electronic dynamics. Moreover, rotational dynamics of both neutral N2O and N2O+ cation is simultaneously observed. The rotational dynamics of the cation is found to be largely dependent on the anisotropy in the strong-field ionization process, which manifests the importance of the coupling between electron and nuclear dynamics. Chapter 8 states the conclusion of the research as well as the future prospect.

この論文で使われている画像

参考文献

[1] T. H. Maiman, “Stimulated optical radiation in ruby,” Nature (London) 187, 493– 494 (1960).

[2] A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660–5694 (2000).

[3] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, 31–35 (1988).

[4] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595–601 (1987).

[5] P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).

[6] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 – 221 (1985).

[7] S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrm. 69, 1207–1223 (1998).

[8] M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high energy 10 fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793–2795 (1996).

[9] R. Szipöcs, C. Spielmann, F. Krausz, and K. Ferencz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19, 201–203 (1994).

[10] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).

[11] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature (London) 414, 509–513 (2001).

[12] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).

[13] M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature (London) 419, 803–807 (2002).

[14] M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schroder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature (London) 446, 627–632 (2007).

[15] M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, T. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658–1662 (2010).

[16] A. Wirth, M. T. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334, 195–200 (2011).

[17] Y. Nabekawa, Y. Furukawa, T. Okino, A. Amani Eilanlou, E. J. Takahashi, K. Yamanouchi, and K. Midorikawa, “Settling time of a vibrational wavepacket in ionization,” Nat. Commun. 6, 8197 (2015).

[18] M. Sabbar, H. Timmers, Y.-J. Chen, A. K. Pymer, Z.-H. Loh, S. Sayres, S. Pabst, R. Santra, and S. R. Leone, “State-resolved attosecond reversible and irreversible dynamics in strong optical fields,” Nat. Phys. 13, 472–478 (2017).

[19] F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, and M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336–339 (2014).

[20] C. Ott, A. Kaldun, L. Argenti, P. Raith, K. Meyer, M. Laux, Y. Zhang, A. Blattermann, S. Hagstotz, T. Ding, R. Heck, J. Madronero, F. Martin, and T. Pfeifer, “Reconstruction and control of a time-dependent two-electron wave packet,” Nature (London) 516, 374–378 (2014).

[21] M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature (London) 493, 75–78 (2013).

[22] M. Schultze, K. Ramasesha, C. Pemmaraju, S. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346, 1348–1352 (2014).

[23] H. Mashiko, K. Oguri, T. Yamaguchi, A. Suda, and H. Gotoh, “Petahertz optical drive with wide-bandgap semiconductor,” Nat. Phys. 12, 741–745 (2016).

[24] M. Lucchini, S. A. Sato, A. Ludwig, J. Herrmann, M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gallmann, and U. Keller, “Attosecond dynamical FranzKeldysh effect in polycrystalline diamond,” Science 353, 916–919 (2016).

[25] M. Volkov, S. A. Sato, F. Schlaepfer, L. Kasmi, N. Hartmann, M. Lucchini, L. Gallmann, A. Rubio, and U. Keller, “Attosecond screening dynamics mediated by electron localization in transition metals,” Nat. Phys. 15, 1145–1149 (2019).

[26] T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, and H. J. Wörner, “Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP-stable mid-infrared driver,” Opt. Express 25, 27506–27518 (2017).

[27] A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko, and O. Cohen, “Spin angular momentum and tunable polarization in high-harmonic generation,” Nat. Photon. 8, 543–549 (2014).

[28] D. D. Hickstein, F. J. Dollar, P. Grychtol, J. L. Ellis, R. Knut, C. Hernández-García, D. Zusin, C. Gentry, J. M. Shaw, T. Fan, K. M. Dorney, A. Becker, A. Jaron-Becker, H. C. Kapteyn, M. M. Murnane, and C. G. Durfee, “Non-collinear generation of angularly isolated circularly polarized high harmonics,” Nat. Photon. 9, 743–750 (2015).

[29] T. Sekikawa, A. Kosuge, T. Kanai, and S. Watanabe, “Nonlinear optics in the extreme ultraviolet,” Nature (London) 432, 605–608 (2004).

[30] E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).

[31] T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrierenvelope phase-stable pulses at 2.1 µm,” Opt. Lett. 31, 1103–1105 (2006).

[32] E. J. Takahashi, T. Kanai, Y. Nabekawa, and K. Midorikawa, “10mJ class femtosecond optical parametric amplifier for generating soft x-ray harmonics,” Appl. Phys. Lett. 93, 041111 (2008).

[33] O. D. Mücke, S. Ališauskas, A. J. Verhoef, A. Pugžlys, A. Baltuška, V. Smilgevičius, J. Pocius, L. Giniunas, R. Danielius, and N. Forget, “Self-compression of ¯ millijoule 1.5 µm pulses,” Opt. Lett. 34, 2498–2500 (2009).

[34] K.-H. Hong, S.-W. Huang, J. Moses, X. Fu, C.-J. Lai, G. Cirmi, A. Sell, E. Granados, P. Keathley, and F. X. Kärtner, “High-energy, phase-stable, ultrabroadband kHz OPCPA at 2.1 µm pumped by a picosecond cryogenic Yb:YAG laser,” Opt. Express 19, 15538–15548 (2011).

[35] F. Silva, P. K. Bates, A. Esteban-Martin, M. Ebrahim-Zadeh, and J. Biegert, “Highaverage-power, carrier-envelope phase-stable, few-cycle pulses at 2.1 µm from a collinear BiB3O6 optical parametric amplifier,” Opt. Lett. 37, 933–935 (2012).

[36] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Subtwo-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6 µm from a BiB3O6 optical parametric chirped-pulse amplifier,” Opt. Lett. 37, 4182–4184 (2012).

[37] Y. Yin, J. Li, X. Ren, K. Zhao, Y. Wu, E. Cunningham, and Z. Chang, “Highefficiency optical parametric chirped-pulse amplifier in BiB3O6 for generation of 3 mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7 µm,” Opt. Lett. 41, 1142–1145 (2016).

[38] Y. Fu, K. Midorikawa, and E. J. Takahashi, “Towards a petawatt-class few-cycle infrared laser system via dual-chirped optical parametric amplification,” Sci. Rep. 8, 7692 (2018).

[39] N. Bigler, J. Pupeikis, S. Hrisafov, L. Gallmann, C. R. Phillips, and U. Keller, “High-power OPCPA generating 1.7 cycle pulses at 2.5 µm,” Opt. Express 26, 26750–26757 (2018).

[40] M. Neuhaus, H. Fuest, M. Seeger, J. Schötz, M. Trubetskov, P. Russbueldt, H. Hoffmann, E. Riedle, Z. Major, V. Pervak, M. F. Kling, and P. Wnuk, “10 W CEP-stable few-cycle source at 2 µm with 100 kHz repetition rate,” Opt. Express 26, 16074– 16085 (2018).

[41] B. Shan and Z. Chang, “Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field,” Phys. Rev. A 65, 011804 (2001).

[42] E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent water window X ray by phase-matched high-order harmonic generation in neutral media,” Phys. Rev. Lett. 101, 253901 (2008).

[43] M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x-ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).

[44] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Carrierenvelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses,” Nat. Commun. 5, 3331 (2014).

[45] S. L. Cousin, F. Silva, S. Teichmann, M. Hemmer, B. Buades, and J. Biegert, “High-flux table-top soft x-ray source driven by sub-2-cycle, CEP stable, 1.85-µm 1-kHz pulses for carbon K-edge spectroscopy,” Opt. Lett. 39, 5383–5386 (2014).

[46] S. M. Teichmann, F. Silva, S. L. Cousin, M. Hemmer, and J. Biegert, “0.5-keV soft X-ray attosecond continua,” Nat. Commun. 7, 11493 (2016).

[47] G. J. Stein, P. D. Keathley, P. Krogen, H. Liang, J. P. Siqueira, C.-L. Chang, C.-J. Lai, K.-H. Hong, G. M. Laurent, and F. X. Kärtner, “Water-window soft x-ray highharmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 µm OPCPA source,” J. Phys. B 49, 155601 (2016).

[48] A. S. Johnson, L. Miseikis, D. A. Wood, D. R. Austin, C. Brahms, S. Jarosch, C. S. Strüber, P. Ye, and J. P. Marangos, “Measurement of sulfur L2,3 and carbon K edge XANES in a polythiophene film using a high harmonic supercontinuum,” Structural Dynamics 3, 062603 (2016).

[49] C. Schmidt, Y. Pertot, T. Balciunas, K. Zinchenko, M. Matthews, H. J. Wörner, and J.-P. Wolf, “High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression,” Opt. Express 26, 11834–11842 (2018).

[50] A. S. Johnson, D. R. Austin, D. A. Wood, C. Brahms, A. Gregory, K. B. Holzner, S. Jarosch, E. W. Larsen, S. Parker, C. S. Strüber, P. Ye, J. W. G. Tisch, and J. P. Marangos, “High-flux soft x-ray harmonic generation from ionization-shaped few-cycle laser pulses,” Sci. Adv. 4 (2018).

[51] J. Pupeikis, P.-A. Chevreuil, N. Bigler, L. Gallmann, C. R. Phillips, and U. Keller, “Water window soft x-ray source enabled by 25-W few-cycle mid-IR OPCPA at 100 kHz,” arXiv 1910.03236 (2019).

[52] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012).

[53] “SXR Specifications | Liniac Coherent Light Source,” https://lcls.slac. stanford.edu/instruments/sxr/specifications. Accessed: 2019-12-13.

[54] T. Shintake, H. Tanaka, T. Hara, T. Tanaka, K. Togawa, M. Yabashi, Y. Otake, Y. Asano, T. Bizen, T. Fukui, S. Goto, A. Higashiya, T. Hirono, N. Hosoda, T. Inagaki, S. Inoue, M. Ishii, Y. Kim, H. Kimura, M. Kitamura, T. Kobayashi, H. Maesaka, T. Masuda, S. Matsui, T. Matsushita, X. Maréchal, M. Nagasono, H. Ohashi, T. Ohata, T. Ohshima, K. Onoe, K. Shirasawa, T. Takagi, S. Takahashi, M. Takeuchi, K. Tamasaku, R. Tanaka, Y. Tanaka, T. Tanikawa, T. Togashi, S. Wu, A. Yamashita, K. Yanagida, C. Zhang, H. Kitamura, and T. Ishikawa, “A compact free-electron laser for generating coherent radiation in the extreme ultraviolet region,” Nat. Photon. 2, 555–559 (2008).

[55] K. Holldack, J. Bahrdt, A. Balzer, U. Bovensiepen, M. Brzhezinskaya, A. Erko, A. Eschenlohr, R. Follath, A. Firsov, W. Frentrup, L. Le Guyader, T. Kachel, P. Kuske, R. Mitzner, R. Müller, N. Pontius, T. Quast, I. Radu, J.-S. Schmidt, C. Schüßler-Langeheine, M. Sperling, C. Stamm, C. Trabant, and A. Föhlisch, “FemtoSpeX: a versatile optical pump-soft X-ray probe facility with 100 fs X-ray pulses of variable polarization,” J. Synchrotron Radiat. 21, 1090–1104 (2014).

[56] S. Yamamoto, Y. Senba, T. Tanaka, H. Ohashi, T. Hirono, H. Kimura, M. Fujisawa, J. Miyawaki, A. Harasawa, T. Seike, S. Takahashi, N. Nariyama, T. Matsushita, M. Takeuchi, T. Ohata, Y. Furukawa, K. Takeshita, S. Goto, Y. Harada, S. Shin, H. Kitamura, A. Kakizaki, M. Oshima, and I. Matsuda, “New soft X-ray beamline BL07LSU at SPring-8,” J. Synchrotron Radiat. 21, 352–365 (2014).

[57] N. Ishii, K. Kaneshima, T. Kanai, S. Watanabe, and J. Itatani, “Generation of sub-two-cycle millijoule infrared pulses in an optical parametric chirped-pulse amplifier and their application to soft x-ray absorption spectroscopy with high-flux high harmonics,” J. Opt. 20, 014003 (2017).

[58] J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, M. Chini, and Z. Chang, “53-attosecond X-ray pulses reach the carbon K-edge,” Nat. Commun. 8, 186 (2017).

[59] B. Buades, D. Moonshiram, T. P. H. Sidiropoulos, I. León, P. Schmidt, I. Pi, N. D. Palo, S. L. Cousin, A. Picón, F. Koppens, and J. Biegert, “Dispersive soft x-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse,” Optica 5, 502–506 (2018).

[60] C. Kleine, M. Ekimova, G. Goldsztejn, S. Raabe, C. Strüber, J. Ludwig, S. Yarlagadda, S. Eisebitt, M. J. J. Vrakking, T. Elsaesser, E. T. J. Nibbering, and A. Rouzée, “Soft x-ray absorption spectroscopy of aqueous solutions using a table-top femtosecond soft x-ray source,” J. Phys. Chem. Lett. 10, 52–58 (2019).

[61] D. Popmintchev, B. R. Galloway, M.-C. Chen, F. Dollar, C. A. Mancuso, A. Hankla, L. Miaja-Avila, G. O’Neil, J. M. Shaw, G. Fan, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, H. C. Kapteyn, T. Popmintchev, and M. M. Murnane, “Near- and extended-edge x-ray-absorption fine-structure spectroscopy using ultrafast coherent high-order harmonic supercontinua,” Phys. Rev. Lett. 120, 093002 (2018).

[62] Y. Pertot, C. Schmidt, M. Matthews, A. Chauvet, M. Huppert, V. Svoboda, A. von Conta, A. Tehlar, D. Baykusheva, J.-P. Wolf, and H. J. Wörner, “Time-resolved xray absorption spectroscopy with a water window high-harmonic source,” Science 355, 264–267 (2017).

[63] A. R. Attar, A. Bhattacherjee, C. D. Pemmaraju, K. Schnorr, K. D. Closser, D. Prendergast, and S. R. Leone, “Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction,” Science 356, 54–59 (2017).

[64] S. L. Cousin, N. Di Palo, B. Buades, S. M. Teichmann, M. Reduzzi, M. Devetta, A. Kheifets, G. Sansone, and J. Biegert, “Attosecond streaking in the water window: A new regime of attosecond pulse characterization,” Phys. Rev. X 7, 041030 (2017).

[65] B. Buades, A. Picón, I. León, N. D. Palo, S. L. Cousin, C. Cocchi, E. Pellegrin, J. H. Martin, S. Mañas-Valero, E. Coronado, T. Danz, C. Draxl, M. Uemoto, K. Yabana, M. Schultze, S. Wall, and J. Biegert, “Attosecond-resolved petahertz carrier motion in semi-metallic TiS2,” arXiv 1808.06493 (2018).

[66] P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys. Rev. Lett. 71, 1994–1997 (1993).

[67] L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” J. Exp. Theor. Phys. 20, 1307 (1965).

[68] A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, “Ionization of atoms in an alternating electric field,” J. Exp. Theor. Phys. 23, 924 (1966).

[69] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” J. Exp. Theor. Phys. 64, 1191 (1986).

[70] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117–2132 (1994).

[71] A. Baltuska, T. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, C. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hansch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature (London) 421, 611– 615 (2003).

[72] C. A. Haworth, L. E. Chipperfield, J. S. Robinson, P. L. Knight, J. P. Marangos, and J. W. G. Tisch, “Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval,” Nat. Phys. 3, 52–57 (2007).

[73] J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).

[74] A. D. Shiner, C. Trallero-Herrero, N. Kajumba, H.-C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Wavelength scaling of high harmonic generation efficiency,” Phys. Rev. Lett. 103, 073902 (2009).

[75] T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray science,” Rep. Prog. Phys. 69, 443–505 (2006).

[76] A. Paul, E. A. Gibson, Xiaoshi Zhang, A. Lytle, T. Popmintchev, Xibin Zhou, M. M. Murnane, I. P. Christov, and H. C. Kapteyn, “Phase-matching techniques for coherent soft X-ray generation,” IEEE J. Quantum Electron. 42, 14–26 (2006).

[77] T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum,” Proc. Natl. Acad. Sci 106, 10516–10521 (2009).

[78] C. Zhang, G. G. Brown, K. T. Kim, D. M. Villeneuve, and P. B. Corkum, “Full characterization of an attosecond pulse generated using an infrared driver,” Sci. Rep. 6, 26771 (2016).

[79] T. Matsushita and R. P. Phizackerley, “A fast x-ray absorption spectrometer for use with synchrotron radiation,” Jpn. J. Appl. Phys. 20, 2223–2228 (1981).

[80] J. Stöhr, NEXAFS Spectroscopy (Springer, 1992).

[81] F. Sette, J. Stöhr, E. B. Kollin, D. J. Dwyer, J. L. Gland, J. L. Robbins, and A. L. Johnson, “Na-induced bonding and bond-length changes for CO on Pt(111): A near-edge x-ray-absorption fine-structure study,” Phys. Rev. Lett. 54, 935–938 (1985).

[82] A. P. Hitchcock, “Core excitation and ionization of molecules,” Phys. Scr. T31, 159–170 (1990).

[83] J. Stöhr, K. Baberschke, R. Jaeger, R. Treichler, and S. Brennan, “Orientation of chemisorbed molecules from surface-absorption fine-structure measurements: CO and NO on Ni(100),” Phys. Rev. Lett. 47, 381–384 (1981).

[84] E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra, N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer, A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz, “Real-time observation of valence electron motion,” Nature (London) 466, 739– 743 (2010).

[85] Y. Kobayashi, K. F. Chang, T. Zeng, D. M. Neumark, and S. R. Leone, “Direct mapping of curve-crossing dynamics in IBr by attosecond transient absorption spectroscopy,” Science 365, 79–83 (2019).

[86] M. Chini, X. Wang, Y. Cheng, Y. Wu, D. Zhao, D. A. Telnov, S.-I. Chu, and Z. Chang, “Sub-cycle oscillations in virtual states brought to light,” Sci. Rep. 3, 1105 (2013).

[87] E. R. Hosler and S. R. Leone, “Characterization of vibrational wave packets by core-level high-harmonic transient absorption spectroscopy,” Phys. Rev. A 88, 023420 (2013).

[88] Z. Wei, J. Li, L. Wang, S. T. See, M. H. Jhon, Y. Zhang, F. Shi, M. Yang, and Z.-H. Loh, “Elucidating the origins of multimode vibrational coherences of polyatomic molecules induced by intense laser fields,” Nat. Commun. 8, 735 (2017).

[89] H. Timmers, X. Zhu, Z. Li, Y. Kobayashi, M. Sabbar, M. Hollstein, M. Reduzzi, T. J. Martínez, D. M. Neumark, and S. R. Leone, “Disentangling conical intersection and coherent molecular dynamics in methyl bromide with attosecond transient absorption spectroscopy,” Nat. Commun. 10, 3133 (2019).

[90] Z.-H. Loh and S. R. Leone, “Ultrafast strong-field dissociative ionization dynamics of CH2Br2 probed by femtosecond soft x-ray transient absorption spectroscopy,” J. Chem. Phys. 128, 204302 (2008).

[91] M.-F. Lin, D. M. Neumark, O. Gessner, and S. R. Leone, “Ionization and dissociation dynamics of vinyl bromide probed by femtosecond extreme ultraviolet transient absorption spectroscopy,” J. Chem. Phys. 140, 064311 (2014).

[92] Y. Cheng, M. Chini, X. Wang, A. González-Castrillo, A. Palacios, L. Argenti, F. Martín, and Z. Chang, “Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy,” Phys. Rev. A 94, 023403 (2016).

[93] E. R. Warrick, W. Cao, D. M. Neumark, and S. R. Leone, “Probing the dynamics of Rydberg and valence states of molecular nitrogen with attosecond transient absorption spectroscopy,” J. Phys. Chem. A 120, 3165–3174 (2016).

[94] H. Wang, M. Chini, S. Chen, C.-H. Zhang, F. He, Y. Cheng, Y. Wu, U. Thumm, and Z. Chang, “Attosecond time-resolved autoionization of argon,” Phys. Rev. Lett. 105, 143002 (2010).

[95] Y. Kobayashi, M. Reduzzi, K. F. Chang, H. Timmers, D. M. Neumark, and S. R. Leone, “Selectivity of electronic coherence and attosecond ionization delays in strong-field double ionization,” Phys. Rev. Lett. 120, 233201 (2018).

[96] L. M. Carneiro, S. K. Cushing, C. Liu, Y. Su, P. Yang, A. P. Alivisatos, and S. R. Leone, “Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3,” Nat. Mater. 16, 819–825 (2017).

[97] A. Bhattacherjee and S. R. Leone, “Ultrafast x-ray transient absorption spectroscopy of gas-phase photochemical reactions: A new universal probe of photoinduced molecular dynamics,” Acc. Chem. Res. 51, 3203–3211 (2018).

[98] A. Chew, N. Douguet, C. Cariker, J. Li, E. Lindroth, X. Ren, Y. Yin, L. Argenti, W. T. Hill, and Z. Chang, “Attosecond transient absorption spectrum of argon at the L2,3 edge,” Phys. Rev. A 97, 031407 (2018).

[99] N. Kosugi, J. Adachi, E. Shigemasa, and A. Yagishita, “High-resolution and symmetry-resolved N and O K-edge absorption spectra of NO,” J. Chem. Phys. 97, 8842–8849 (1992).

[100] J. Adachi, N. Kosugi, and A. Yagishita, “Symmetry-resolved soft x-ray absorption spectroscopy: its application to simple molecules,” J. Phys. B 38, R127–R152 (2005).

[101] O. Ghafur, A. Rouzée, A. Gijsbertsen, W. K. Siu, S. Stolte, and M. J. J. Vrakking, “Impulsive orientation and alignment of quantum-state-selected NO molecules,” Nat. Phys. 5, 289–293 (2009).

[102] P. M. Kraus, S. B. Zhang, A. Gijsbertsen, R. R. Lucchese, N. Rohringer, and H. J. Wörner, “High-harmonic probing of electronic coherence in dynamically aligned molecules,” Phys. Rev. Lett. 111, 243005 (2013).

[103] S. G. Walt, N. Bhargava Ram, M. Atala, N. I. Shvetsov-Shilovski, A. von Conta, D. Baykusheva, M. Lein, and H. J. Wörner, “Dynamics of valence-shell electrons and nuclei probed by strong-field holography and rescattering,” Nat. Commun. 8, 15651 (2017).

[104] X. Zhou, P. Ranitovic, C. W. Hogle, J. H. D. Eland, H. C. Kapteyn, and M. M. Murnane, “Probing and controlling non-Born-Oppenheimer dynamics in highly excited molecular ions,” Nat. Phys. 8, 232–237 (2012).

[105] M. Huppert, I. Jordan, D. Baykusheva, A. von Conta, and H. J. Wörner, “Attosecond delays in molecular photoionization,” Phys. Rev. Lett. 117, 093001 (2016).

[106] R. Schoenlein, T. Elsaesser, K. Holldack, Z. Huang, H. Kapteyn, M. Murnane, and M. Woerner, “Recent advances in ultrafast X-ray sources,” Phil. Trans. R. Soc. A 377, 20180384 (2019).

[107] L. Young, K. Ueda, M. Gühr, P. H. Bucksbaum, M. Simon, S. Mukamel, N. Rohringer, K. C. Prince, C. Masciovecchio, M. Meyer, A. Rudenko, D. Rolles, C. Bostedt, M. Fuchs, D. A. Reis, R. Santra, H. Kapteyn, M. Murnane, H. Ibrahim, F. Légaré, M. Vrakking, M. Isinger, D. Kroon, M. Gisselbrecht, A. L’Huillier, H. J. Wörner, and S. R. Leone, “Roadmap of ultrafast x-ray atomic and molecular physics,” J. Phys. B 51, 032003 (2018).

[108] J. Weisshaupt, V. Juvé, M. Holtz, S. Ku, M. Woerner, T. Elsaesser, S. Alisauskas, A. Pugzlys, and A. Baltuska, “High-brightness table-top hard X-ray source driven by sub-100-femtosecond mid-infrared pulses,” Nat. Photon. 8, 927–930 (2014).

[109] A. Jonas, H. Stiel, L. Glöggler, D. Dahm, K. Dammer, B. Kanngießer, and I. Mantouvalou, “Towards Poisson noise limited optical pump soft X-ray probe NEXAFS spectroscopy using a laser-produced plasma source,” Opt. Express 27, 36524– 36537 (2019).

[110] H. Öström, H. Öberg, H. Xin, J. LaRue, M. Beye, M. Dell’Angela, J. Gladh, M. L. Ng, J. A. Sellberg, S. Kaya, G. Mercurio, D. Nordlund, M. Hantschmann, F. Hieke, D. Kühn, W. F. Schlotter, G. L. Dakovski, J. J. Turner, M. P. Minitti, A. Mitra, S. P. Moeller, A. Föhlisch, M. Wolf, W. Wurth, M. Persson, J. K. Nørskov, F. Abild-Pedersen, H. Ogasawara, L. G. M. Pettersson, and A. Nilsson, “Probing the transition state region in catalytic CO oxidation on Ru,” Science 347, 978–982 (2015).

[111] T. J. A. Wolf, R. H. Myhre, J. P. Cryan, S. Coriani, R. J. Squibb, A. Battistoni, N. Berrah, C. Bostedt, P. Bucksbaum, G. Coslovich, R. Feifel, K. J. Gaffney, J. Grilj, T. J. Martinez, S. Miyabe, S. P. Moeller, M. Mucke, A. Natan, R. Obaid, T. Osipov, O. Plekan, S. Wang, H. Koch, and M. Gühr, “Probing ultrafast ππ*/nπ* internal conversion in organic chromophores via K-edge resonant absorption,” Nat. Commun. 8, 29 (2017).

[112] Y. Obara, H. Ito, T. Ito, N. Kurahashi, S. Thürmer, H. Tanaka, T. Katayama, T. Togashi, S. Owada, Y.-i. Yamamoto, S. Karashima, J. Nishitani, M. Yabashi, T. Suzuki, and K. Misawa, “Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL,” Struct. Dyn. 4, 044033 (2017).

[113] A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge x-ray absorption,” Phys. Rev. Lett. 95, 067405 (2005).

[114] I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature (London) 472, 205–208 (2011).

[115] N. Pontius, T. Kachel, C. Schüßler-Langeheine, W. F. Schlotter, M. Beye, F. Sorgenfrei, C. F. Chang, A. Föhlisch, W. Wurth, P. Metcalf, I. Leonov, A. Yaresko, N. Stojanovic, M. Berglund, N. Guerassimova, S. Düsterer, H. Redlin, and H. A. Dürr, “Time-resolved resonant soft x-ray diffraction with free-electron lasers: Femtosecond dynamics across the Verwey transition in magnetite,” Appl. Phys. Lett. 98, 182504 (2011).

[116] M. P. Minitti, J. M. Budarz, A. Kirrander, J. S. Robinson, D. Ratner, T. J. Lane, D. Zhu, J. M. Glownia, M. Kozina, H. T. Lemke, M. Sikorski, Y. Feng, S. Nelson, K. Saita, B. Stankus, T. Northey, J. B. Hastings, and P. M. Weber, “Imaging molecular motion: Femtosecond X-ray scattering of an electrocyclic chemical reaction,” Phys. Rev. Lett. 114, 255501 (2015).

[117] S. Minemoto, H. Shimada, K. Komatsu, W. Komatsubara, T. Majima, S. Miyake, T. Mizuno, S. Owada, H. Sakai, T. Togashi, M. Yabashi, P. Decleva, M. Stener, S. Tsuru, and A. Yagishita, “Time-resolved photoelectron angular distributions from nonadiabatically aligned CO2 molecules with SX-FEL at SACLA,” J. Phys. Commun. 2, 115015 (2018).

[118] N. Hartmann, G. Hartmann, R. Heider, M. S. Wagner, M. Ilchen, J. Buck, A. O. Lindahl, C. Benko, J. Grünert, J. Krzywinski, J. Liu, A. A. Lutman, A. Marinelli, T. Maxwell, A. A. Miahnahri, S. P. Moeller, M. Planas, J. Robinson, A. K. Kazansky, N. M. Kabachnik, J. Viefhaus, T. Feurer, R. Kienberger, R. N. Coffee, and W. Helml, “Attosecond time-energy structure of X-ray free-electron laser pulses,” Nat. Photon. 12, 215–220 (2018).

[119] J. Duris, S. Li, T. Driver, E. G. Champenois, J. P. MacArthur, A. A. Lutman, Z. Zhang, P. Rosenberger, J. W. Aldrich, R. Coffee, G. Coslovich, F.-J. Decker, J. M. Glownia, G. Hartmann, W. Helml, A. Kamalov, J. Knurr, J. Krzywinski, M.- F. Lin, J. P. Marangos, M. Nantel, A. Natan, J. T. O’Neal, N. Shivaram, P. Walter, A. L. Wang, J. J. Welch, T. J. A. Wolf, J. Z. Xu, M. F. Kling, P. H. Bucksbaum, A. Zholents, Z. Huang, J. P. Cryan, and A. Marinelli, “Tunable isolated attosecond X-ray pulses with gigawatt peak power from a free-electron laser,” Nat. Photon. 14, 30–36 (2020).

[120] A. Dubietis, G. Jonusauskas, and A. Piskarskas, “Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal,” Opt. Commun. 88, 437–440 (1992).

[121] C. C. Wang and G. W. Racette, “Measurement of parametric gain accompanying optical difference frequency generation,” Appl. Phys. Lett. 6, 169–171 (1965).

[122] C. Zhou, T. Seki, T. Kitamura, Y. Kuramoto, T. Sukegawa, N. Ishii, T. Kanai, J. Itatani, Y. Kobayashi, and S. Watanabe, “Wavefront analysis of high-efficiency, large-scale, thin transmission gratings,” Opt. Express 22, 5995–6008 (2014).

[123] M. Zimmermann, C. Gohle, R. Holzwarth, T. Udem, and T. W. Hänsch, “Optical clockwork with an offset-free difference-frequency comb: accuracy of sum- and difference-frequency generation,” Opt. Lett. 29, 310–312 (2004).

[124] C. Manzoni, G. Cerullo, and S. D. Silvestri, “Ultrabroadband self-phase-stabilized pulses by difference-frequency generation,” Opt. Lett. 29, 2668–2670 (2004).

[125] P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Comm. 140, 245–249 (1997).

[126] T. R. Schibli, J. Kim, O. Kuzucu, J. T. Gopinath, S. N. Tandon, G. S. Petrich, L. A. Kolodziejski, J. G. Fujimoto, E. P. Ippen, and F. X. Kaertner, “Attosecond active synchronization of passively mode-locked lasers by balanced cross correlation,” Opt. Lett. 28, 947–949 (2003).

[127] R. Trebino, Frequency-Resolved Optical Gating (Kluwer Academic, Boston, 2000).

[128] J. Itatani, F. Quéré, G. L. Yudin, M. Y. Ivanov, F. Krausz, and P. B. Corkum, “Attosecond streak camera,” Phys. Rev. Lett. 88, 173903 (2002).

[129] K. T. Kim, C. Zhang, A. D. Shiner, B. E. Schmidt, F. Legare, D. M. Villeneuve, and P. B. Corkum, “Petahertz optical oscilloscope,” Nat. Photon. 7, 958–962 (2013).

[130] A. S. Wyatt, T. Witting, A. Schiavi, D. Fabris, P. Matia-Hernando, I. A. Walmsley, J. P. Marangos, and J. W. G. Tisch, “Attosecond sampling of arbitrary optical waveforms,” Optica 3, 303–310 (2016).

[131] P. Carpeggiani, M. Reduzzi, A. Comby, H. Ahmadi, S. Kühn, F. Calegari, M. Nisoli, F. Frassetto, L. Poletto, D. Hoff, J. Ullrich, C. D. Schröter, R. Moshammer, G. G. Paulus, and G. Sansone, “Vectorial optical field reconstruction by attosecond spatial interferometry,” Nat. Photon. 11, 383–389 (2017).

[132] Y. Nomura, H. Shirai, and T. Fuji, “Frequency-resolved optical gating capable of carrier-envelope phase determination,” Nat. Commun. 4, 2820 (2013).

[133] S. B. Park, K. Kim, W. Cho, S. I. Hwang, I. Ivanov, C. H. Nam, and K. T. Kim, “Direct sampling of a light wave in air,” Optica 5, 402–408 (2018).

[134] A. Schiffrin, T. Paasch-Colberg, N. Karpowicz, V. Apalkov, D. Gerster, S. Mühlbrandt, M. Korbman, J. Reichert, M. Schultze, S. Holzner, J. V. Barth, R. Kienberger, R. Ernstorfer, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Optical-field-induced current in dielectrics,” Nature (London) 493, 70–74 (2012).

[135] T. Paasch-Colberg, S. Y. Kruchinin, Özge Sağlam, S. Kapser, S. Cabrini, S. Muehlbrandt, J. Reichert, J. V. Barth, R. Ernstorfer, R. Kienberger, V. S. Yakovlev, N. Karpowicz, and A. Schiffrin, “Sub-cycle optical control of current in a semiconductor: from the multiphoton to the tunneling regime,” Optica 3, 1358–1361 (2016).

[136] J. Liu and X.-C. Zhang, “Terahertz-radiation-enhanced emission of fluorescence from gas plasma,” Phys. Rev. Lett. 103, 235002 (2009).

[137] X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tunneling ionization,” Phys. Rev. A 66, 033402 (2002).

[138] A. Lofthus and P. H. Krupenie, “The spectrum of molecular nitrogen,” J. Phys. Chem. Ref. Data 6, 113–307 (1977).

[139] I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55, 1205–1209 (1965).

[140] N. Saito, N. Ishii, T. Kanai, and J. Itatani, “All-optical characterization of the twodimensional waveform and the Gouy phase of an infrared pulse based on plasma fluorescence of gas,” Opt. Express 26, 24591–24601 (2018).

[141] J. R. Sutherland, E. L. Christensen, N. D. Powers, S. E. Rhynard, J. C. Painter, and J. Peatross, “High harmonic generation in a semi-infinite gas cell,” Opt. Express 12, 4430–4436 (2004).

[142] J.-P. Brichta, M. C. H. Wong, J. B. Bertrand, H.-C. Bandulet, D. M. Rayner, and V. R. Bhardwaj, “Comparison and real-time monitoring of high-order harmonic generation in different sources,” Phys. Rev. A 79, 033404 (2009).

[143] M. Huppert, I. Jordan, and H. J. Wörner, “Attosecond beamline with actively stabilized and spatially separated beam paths,” Rev. Sci. Instrum. 86, 123106 (2015).

[144] “CXRO X-ray interactions with matter,” http://henke.lbl.gov/optical_ constants. Accessed: 2019-12-13.

[145] M. Chini, H. Mashiko, H. Wang, S. Chen, C. Yun, S. Scott, S. Gilbertson, and Z. Chang, “Delay control in attosecond pump-probe experiments,” Opt. Express 17, 21459–21464 (2009).

[146] M. Sabbar, S. Heuser, R. Boge, M. Lucchini, L. Gallmann, C. Cirelli, and U. Keller, “Combining attosecond XUV pulses with coincidence spectroscopy,” Rev. Sci. Instrum. 85, 103113 (2014).

[147] M. Fieß, M. Schultze, E. Goulielmakis, B. Dennhardt, J. Gagnon, M. Hofstetter, R. Kienberger, and F. Krausz, “Versatile apparatus for attosecond metrology and spectroscopy,” Rev. Sci. Instrum. 81, 093103 (2010).

[148] J. Vaughan, J. Bahder, B. Unzicker, D. Arthur, M. Tatum, T. Hart, G. Harrison, S. Burrows, P. Stringer, and G. M. Laurent, “Design of an optically-locked interferometer for attosecond pump-probe setups,” Opt. Express 27, 30989–31000 (2019).

[149] Z. Chang, Fundamentals of Attosecond Optics (CRC Press, 2011).

[150] S. M. Teichmann, F. Silva, S. L. Cousin, and J. Biegert, “Importance of intensity-tophase coupling for water-window high-order-harmonic generation with few-cycle pulses,” Phys. Rev. A 91, 063817 (2015).

[151] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, “Isolated single-cycle attosecond pulses,” Science 314, 443–446 (2006).

[152] T. H. Dinh, Y. Kondo, T. Tamura, Y. Ono, H. Hara, H. Oikawa, Y. Yamamoto, M. Ishino, M. Nishikino, T. Makimura, P. Dunne, G. O’Sullivan, S. Ohta, K. Kitano, T. Ejima, T. Hatano, and T. Higashiguchi, “Evaluation of a flat-field grazing incidence spectrometer for highly charged ion plasma emission in soft x-ray spectral region from 1 to 10 nm,” Rev. Sci. Instrum. 87, 123106 (2016).

[153] C. A. MacDonald, An Introduction to X-ray Physics, Optics, and Applications (Princeton University Press, 2017).

[154] O. Schwarzkopf, F. Eggenstein, U. Flechsig, C. Kalus, H. Lammert, U. Menthel, G. Reichardt, P. Rotter, F. Senf, T. Zeschke, and W. B. Peatman, “High-resolution constant length rowland circle monochromator at BESSY,” Rev. Sci. Instrum. 69, 3789–3793 (1998).

[155] C. T. Chen, Y. Ma, and F. Sette, “K-shell photoabsorption of the N2 molecule,” Phys. Rev. A 40, 6737–6740 (1989).

[156] K. Kidena, M. Endo, H. Takamatsu, M. Niibe, M. Tagawa, K. Yokota, Y. Furuyama, K. Komatsu, H. Saitoh, and K. Kanda, “Resistance of hydrogenated titanium-doped diamond-like carbon film to hyperthermal atomic oxygen,” Metals 5, 1957–1970 (2015).

[157] G. Akgül, “Effects of thickness on electronic structure of titanium thin films,” Bull. Mater. Sci. 37, 41–45 (2014).

[158] V. N. Strocov, T. Schmitt, U. Flechsig, L. Patthey, and G. S. Chiuzbăian, “Numerical optimization of spherical variable-line-spacing grating X-ray spectrometers,” J. Synchrotron Radiat. 18, 134–142 (2011).

[159] G. Ghiringhelli, A. Piazzalunga, C. Dallera, G. Trezzi, L. Braicovich, T. Schmitt, V. N. Strocov, R. Betemps, L. Patthey, X. Wang, and M. Grioni, “SAXES, a high resolution spectrometer for resonant x-ray emission in the 400–1600 eV energy range,” Rev. Sci. Instrum. 77, 113108 (2006).

[160] P. Antoine, A. L’Huillier, and M. Lewenstein, “Attosecond pulse trains using highorder harmonics,” Phys. Rev. Lett. 77, 1234–1237 (1996).

[161] D. G. Lee, H. J. Shin, Y. H. Cha, K. H. Hong, J.-H. Kim, and C. H. Nam, “Selection of high-order harmonics from a single quantum path for the generation of an attosecond pulse train,” Phys. Rev. A 63, 021801 (2001).

[162] N. Kosugi and H. Kuroda, “Efficient methods for solving the open-shell SCF problem and for obtaining an initial guess. the “one-Hamiltonian” and the “partial SCF” methods,” Chem. Phys. Lett. 74, 490 – 493 (1980).

[163] N. Kosugi, “Strategies to vectorize conventional SCF-Cl algorithms,” Theor. Chim. Acta 72, 149–173 (1987).

[164] W. C. Ho, I. Ozier, D. T. Cramb, and M. C. L. Gerry, “Diode laser spectroscopy of the vibrational fundamental of NO+,” J. Mol. Spectrosc. 149, 559–561 (1991).

[165] J. Ortigoso, M. Rodriguez, M. Gupta, and B. Friedrich, “Time evolution of pendular states created by the interaction of molecular polarizability with a pulsed nonresonant laser field,” J. Chem. Phys. 110, 3870–3875 (1999).

[166] H. Sakai, C. P. Safvan, J. J. Larsen, K. M. Hilligsøe, K. Hald, and H. Stapelfeldt, “Controlling the alignment of neutral molecules by a strong laser field,” J. Chem. Phys. 110, 10235–10238 (1999).

[167] C. Amiot, “The infrared emission spectrum of NO: Analysis of the ∆v = 3 sequence up to v = 22,” J. Mol. Spectrosc. 94, 150 – 172 (1982).

[168] N. J. Bridge, A. D. Buckingham, and J. W. Linnett, “The polarization of laser light scattered by gases,” Proc. Royal Soc. A 295, 334–349 (1966).

[169] M. Schmidt, K. Baldridge, J. Boatz, S. Elbert, M. Gordon, J. Jensen, S. Koseki, N. Matsunaga, K. Nguyen, S. Su, T. Windus, M. Dupuis, and J. Montgomery, “General atomic and molecular electronic structure system,” J. Computat. Chem. 14, 1347–1363 (1993).

[170] G. W. Luther, Inorganic Chemistry for Geochemistry and Environmental Sciences: Fundamentals and Applications (Wiley, 2016).

[171] T. Shimanouchi, Tables of molecular vibrational frequencies. Consolidated volume I (National Bureau of Standards, 1972).

[172] T. Ergler, B. Feuerstein, A. Rudenko, K. Zrost, C. D. Schröter, R. Moshammer, and J. Ullrich, “Quantum-phase resolved mapping of ground-state vibrational D2 wave packets via selective depletion in intense laser pulses,” Phys. Rev. Lett. 97, 103004 (2006).

[173] E. R. Hosler, “Ultrafast strong-field vibrational dynamics studied by femtosecond extreme-ultraviolet transient absorption spectroscopy,” Ph.D. thesis, UC Berkeley (2013).

[174] O. Tolstikhin, T. Morishita, and L. Madsen, “Theory of tunneling ionization of molecules: Weak-field asymptotics including dipole effects,” Phys. Rev. A 84, 053423 (2011).

[175] L. H. Scharpen, J. S. Muenter, and V. W. Laurie, “Electric polarizability anisotropies of nitrous oxide, propyne, and carbonyl sulfide by microwave spectroscopy,” J. Chem. Phys. 53, 2513–2519 (1970).

[176] H. Gritli, Z. B. Lakhdar, G. Chambaud, and P. Rosmus, “Ro-vibronic spectrum of the N2O + ion in the X2Π state,” Chem. Phys. 178, 223–233 (1993).

[177] Y. Harada, M. Kobayashi, H. Niwa, Y. Senba, H. Ohashi, T. Tokushima, Y. Horikawa, S. Shin, and M. Oshima, “Ultrahigh resolution soft x-ray emission spectrometer at BL07LSU in SPring-8,” Rev. Sci. Instrum. 83, 013116 (2012).

[178] M. Nagasaka, H. Yuzawa, T. Horigome, and N. Kosugi, “In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method,” Rev. Sci. Instrum. 85, 104105 (2014).

[179] “Spherical Hamronic Tools | SHTOOLS - Tools for working with spherical harmonics,” https://shtools.oca.eu/shtools/public/. Accessed: 2019-12- 13.

[180] T. Endo, A. Matsuda, M. Fushitani, T. Yasuike, O. I. Tolstikhin, T. Morishita, and A. Hishikawa, “Imaging electronic excitation of NO by ultrafast laser tunneling ionization,” Phys. Rev. Lett. 116, 163002 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る